Identifying, attributing, and overcoming common data quality issues of manned station observations

Descripción del Articulo

In situ climatological observations are essential for studies related to climate trends and extreme events. However, in many regions of the globe, observational records are affected by a large number of data quality issues. Assessing and controlling the quality of such datasets is an important, ofte...

Descripción completa

Detalles Bibliográficos
Autores: Hunziker, Stefan, Gubler, Stefanie, Calle, J., Moreno, Isabel, Andrade, Marcos, Velarde, Fernando, Ticona, Laura, Carrasco, Gualberto, Castellón, Yaruska, Oria, Clara, Croci-Maspoli, M., Konzelmann, Thomas, Rohrer, M., Brönnimann, Stefan
Formato: artículo
Fecha de Publicación:2017
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/151
Enlace del recurso:https://hdl.handle.net/20.500.12542/151
https://doi.org/10.1002/joc.5037.
Nivel de acceso:acceso abierto
Materia:Climatología
Data rescue
Error attribution
Quality control
Análisis de Datos
https://purl.org/pe-repo/ocde/ford#1.05.10
datos y estadisticas ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
id SEAM_df593fc886ebf01a315dd390846c42bf
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/151
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.en_US.fl_str_mv Identifying, attributing, and overcoming common data quality issues of manned station observations
title Identifying, attributing, and overcoming common data quality issues of manned station observations
spellingShingle Identifying, attributing, and overcoming common data quality issues of manned station observations
Hunziker, Stefan
Climatología
Data rescue
Error attribution
Quality control
Análisis de Datos
https://purl.org/pe-repo/ocde/ford#1.05.10
datos y estadisticas ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
title_short Identifying, attributing, and overcoming common data quality issues of manned station observations
title_full Identifying, attributing, and overcoming common data quality issues of manned station observations
title_fullStr Identifying, attributing, and overcoming common data quality issues of manned station observations
title_full_unstemmed Identifying, attributing, and overcoming common data quality issues of manned station observations
title_sort Identifying, attributing, and overcoming common data quality issues of manned station observations
author Hunziker, Stefan
author_facet Hunziker, Stefan
Gubler, Stefanie
Calle, J.
Moreno, Isabel
Andrade, Marcos
Velarde, Fernando
Ticona, Laura
Carrasco, Gualberto
Castellón, Yaruska
Oria, Clara
Croci-Maspoli, M.
Konzelmann, Thomas
Rohrer, M.
Brönnimann, Stefan
author_role author
author2 Gubler, Stefanie
Calle, J.
Moreno, Isabel
Andrade, Marcos
Velarde, Fernando
Ticona, Laura
Carrasco, Gualberto
Castellón, Yaruska
Oria, Clara
Croci-Maspoli, M.
Konzelmann, Thomas
Rohrer, M.
Brönnimann, Stefan
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Hunziker, Stefan
Gubler, Stefanie
Calle, J.
Moreno, Isabel
Andrade, Marcos
Velarde, Fernando
Ticona, Laura
Carrasco, Gualberto
Castellón, Yaruska
Oria, Clara
Croci-Maspoli, M.
Konzelmann, Thomas
Rohrer, M.
Brönnimann, Stefan
dc.subject.en_US.fl_str_mv Climatología
Data rescue
Error attribution
Quality control
Análisis de Datos
topic Climatología
Data rescue
Error attribution
Quality control
Análisis de Datos
https://purl.org/pe-repo/ocde/ford#1.05.10
datos y estadisticas ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.sinia.es_PE.fl_str_mv datos y estadisticas ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
description In situ climatological observations are essential for studies related to climate trends and extreme events. However, in many regions of the globe, observational records are affected by a large number of data quality issues. Assessing and controlling the quality of such datasets is an important, often overlooked aspect of climate research. Besides analysing the measurement data, metadata are important for a comprehensive data quality assessment. However, metadata are often missing, but may partly be reconstructed by suitable actions such as station inspections. This study identifies and attributes the most important common data quality issues in Bolivian and Peruvian temperature and precipitation datasets. The same or similar errors are found in many other predominantly manned station networks worldwide. A large fraction of these issues can be traced back to measurement errors by the observers. Therefore, the most effective way to prevent errors is to strengthen the training of observers and to establish a near real-time quality control (QC) procedure. Many common data quality issues are hardly detected by usual QC approaches. Data visualization, however, is an effective tool to identify and attribute those issues, and therefore enables data users to potentially correct errors and to decide which purposes are not affected by specific problems. The resulting increase in usable station records is particularly important in areas where station networks are sparse. In such networks, adequate selection and treatment of time series based on a comprehensive QC procedure may contribute to improving data homogeneity more than statistical data homogenization methods.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2019-09-20T01:07:11Z
dc.date.available.none.fl_str_mv 2019-09-20T01:07:11Z
dc.date.issued.fl_str_mv 2017-03-20
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.es_PE.fl_str_mv text/publicacion cientifica
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format article
status_str acceptedVersion
dc.identifier.govdoc.none.fl_str_mv Perú
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/151
dc.identifier.isni.none.fl_str_mv 0000 0001 0746 0446
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/joc.5037.
dc.identifier.journal.es_PE.fl_str_mv International Journal of Climatology
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/151
https://hdl.handle.net/20.500.12542/151
identifier_str_mv Perú
0000 0001 0746 0446
International Journal of Climatology
url https://hdl.handle.net/20.500.12542/151
https://doi.org/10.1002/joc.5037.
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1097-0088
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv John Wiley and Sons Ltd
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/1/joc.5037.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/2/license_rdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/3/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/4/joc.5037.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/5/joc.5037.pdf.jpg
bitstream.checksum.fl_str_mv 862f1b159e8f3b0d63eca109a8aeb642
8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
5033257595e1fe8d51797bcebd34d96a
d8e32a655a15e392454a481cbc112fbd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1846967679972278272
spelling Hunziker, StefanGubler, StefanieCalle, J.Moreno, IsabelAndrade, MarcosVelarde, FernandoTicona, LauraCarrasco, GualbertoCastellón, YaruskaOria, ClaraCroci-Maspoli, M.Konzelmann, ThomasRohrer, M.Brönnimann, Stefan2019-09-20T01:07:11Z2019-09-20T01:07:11Z2017-03-20Perúhttps://hdl.handle.net/20.500.12542/1510000 0001 0746 0446https://doi.org/10.1002/joc.5037.International Journal of Climatologyhttps://hdl.handle.net/20.500.12542/151https://hdl.handle.net/20.500.12542/151In situ climatological observations are essential for studies related to climate trends and extreme events. However, in many regions of the globe, observational records are affected by a large number of data quality issues. Assessing and controlling the quality of such datasets is an important, often overlooked aspect of climate research. Besides analysing the measurement data, metadata are important for a comprehensive data quality assessment. However, metadata are often missing, but may partly be reconstructed by suitable actions such as station inspections. This study identifies and attributes the most important common data quality issues in Bolivian and Peruvian temperature and precipitation datasets. The same or similar errors are found in many other predominantly manned station networks worldwide. A large fraction of these issues can be traced back to measurement errors by the observers. Therefore, the most effective way to prevent errors is to strengthen the training of observers and to establish a near real-time quality control (QC) procedure. Many common data quality issues are hardly detected by usual QC approaches. Data visualization, however, is an effective tool to identify and attribute those issues, and therefore enables data users to potentially correct errors and to decide which purposes are not affected by specific problems. The resulting increase in usable station records is particularly important in areas where station networks are sparse. In such networks, adequate selection and treatment of time series based on a comprehensive QC procedure may contribute to improving data homogeneity more than statistical data homogenization methods.Por paresapplication/pdfengJohn Wiley and Sons Ltdurn:issn:1097-0088info:eu-repo/semantics/openAccessReconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)https://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIClimatologíaData rescueError attributionQuality controlAnálisis de Datoshttps://purl.org/pe-repo/ocde/ford#1.05.10datos y estadisticas ambientales - Gestión, Fiscalización y Participación Ciudadana AmbientalIdentifying, attributing, and overcoming common data quality issues of manned station observationsinfo:eu-repo/semantics/articletext/publicacion cientificainfo:eu-repo/semantics/acceptedVersionORIGINALjoc.5037.pdfjoc.5037.pdfapplication/pdf16271999http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/1/joc.5037.pdf862f1b159e8f3b0d63eca109a8aeb642MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTjoc.5037.pdf.txtjoc.5037.pdf.txtExtracted texttext/plain85680http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/4/joc.5037.pdf.txt5033257595e1fe8d51797bcebd34d96aMD54THUMBNAILjoc.5037.pdf.jpgjoc.5037.pdf.jpgGenerated Thumbnailimage/jpeg7276http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/151/5/joc.5037.pdf.jpgd8e32a655a15e392454a481cbc112fbdMD5520.500.12542/151oai:repositorio.senamhi.gob.pe:20.500.12542/1512025-10-23 17:05:05.464Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.427304
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).