Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016
Descripción del Articulo
The Weather Research and Forecasting-Chemistry (WRFChem) model was used to develop an operational air quality forecast system for the Metropolitan Area of Lima-Callao (MALC), Peru, that is affected by high particulate matter concentrations episodes. In this work, we describe the implementation of an...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
Repositorio: | SENAMHI-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/990 |
Enlace del recurso: | https://hdl.handle.net/20.500.12542/990 |
Nivel de acceso: | acceso abierto |
Materia: | Contaminación Ambiental Calidad del Aire Calidad Ambiental Contaminantes Atmosféricos Análisis de Contaminantes Modelos y Simulación WRF-Chem Model https://purl.org/pe-repo/ocde/ford#1.05.08 https://purl.org/pe-repo/ocde/ford#1.05.09 contaminacion del aire - Aire y Atmósfera |
id |
SEAM_7df2f5b6ad6aa0f7a483f59876ebb4b7 |
---|---|
oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/990 |
network_acronym_str |
SEAM |
network_name_str |
SENAMHI-Institucional |
repository_id_str |
4818 |
dc.title.es_PE.fl_str_mv |
Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016 |
title |
Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016 |
spellingShingle |
Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016 Sánchez Ccoyllo, Odón Contaminación Ambiental Calidad del Aire Calidad Ambiental Contaminantes Atmosféricos Análisis de Contaminantes Modelos y Simulación WRF-Chem Model https://purl.org/pe-repo/ocde/ford#1.05.08 https://purl.org/pe-repo/ocde/ford#1.05.09 contaminacion del aire - Aire y Atmósfera |
title_short |
Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016 |
title_full |
Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016 |
title_fullStr |
Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016 |
title_full_unstemmed |
Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016 |
title_sort |
Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016 |
author |
Sánchez Ccoyllo, Odón |
author_facet |
Sánchez Ccoyllo, Odón Ordoñez Aquino, Carol Muñoz, Ángel G. Llacza Rodríguez, Alan Andrade, María Fátima Liu, Yang Reátegui-Romero, Warren Brasseur, Guy |
author_role |
author |
author2 |
Ordoñez Aquino, Carol Muñoz, Ángel G. Llacza Rodríguez, Alan Andrade, María Fátima Liu, Yang Reátegui-Romero, Warren Brasseur, Guy |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Sánchez Ccoyllo, Odón Ordoñez Aquino, Carol Muñoz, Ángel G. Llacza Rodríguez, Alan Andrade, María Fátima Liu, Yang Reátegui-Romero, Warren Brasseur, Guy |
dc.subject.es_PE.fl_str_mv |
Contaminación Ambiental Calidad del Aire Calidad Ambiental Contaminantes Atmosféricos Análisis de Contaminantes Modelos y Simulación WRF-Chem Model |
topic |
Contaminación Ambiental Calidad del Aire Calidad Ambiental Contaminantes Atmosféricos Análisis de Contaminantes Modelos y Simulación WRF-Chem Model https://purl.org/pe-repo/ocde/ford#1.05.08 https://purl.org/pe-repo/ocde/ford#1.05.09 contaminacion del aire - Aire y Atmósfera |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.08 https://purl.org/pe-repo/ocde/ford#1.05.09 |
dc.subject.sinia.none.fl_str_mv |
contaminacion del aire - Aire y Atmósfera |
description |
The Weather Research and Forecasting-Chemistry (WRFChem) model was used to develop an operational air quality forecast system for the Metropolitan Area of Lima-Callao (MALC), Peru, that is affected by high particulate matter concentrations episodes. In this work, we describe the implementation of an operational air quality-forecasting platform to be used in the elaboration of public policies by decision makers, and as a research tool to evaluate the formation and transport of air pollutants in the MALC. To examine the skills of this new system, an air pollution event in April 2016 exhibiting unusually elevated PM2.5 concentrations was simulated and compared against in situ air quality measurements. In addition, a Model Output Statistic (MOS) algorithm has been developed to improve outputs of inhalable particulate matter (PM10) and fine particulate matter (PM2.5) from the WRF-Chem model. The obtained results showed that MOS increased the accuracy in terms of mean normalized bias for PM10 and PM2.5 from -43.1% and 71.3% to 3.1%, 7.3%, respectively. In addition, the mean normalized gross error for PM10 and PM2.5 were reduced from 48% and 92.3% to 13.4% and 10.1%, respectively. The WRF-Chem Model results showed an appropriate relationship between of temperature and relative humidity with observations during April 2016. Mean normalized bias for temperature and relative humidity were approximately - 0.6% and 1.1% respectively. In addition, the mean normalized gross error for temperature and relative humidity were approximately 4.0% and 0.1% respectively. The results showed that this modelling system can be a useful tool for the analysis of air quality in MALC. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2021-06-25T20:23:55Z |
dc.date.available.none.fl_str_mv |
2021-06-25T20:23:55Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.sinia.none.fl_str_mv |
text/publicacion cientifica |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/990 |
dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/990 |
url |
https://hdl.handle.net/20.500.12542/990 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.es_PE.fl_str_mv |
http://jirae.petra.ac.id/index.php/jirae/index |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Petra Christian University |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
instacron_str |
SENAMHI |
institution |
SENAMHI |
reponame_str |
SENAMHI-Institucional |
collection |
SENAMHI-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/1/Modeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/2/license_rdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/3/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/4/Modeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/5/Modeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf.jpg |
bitstream.checksum.fl_str_mv |
5788fbebdbe38555d9aac48d85b6c687 9868ccc48a14c8d591352b6eaf7f6239 8a4605be74aa9ea9d79846c1fba20a33 2a94debae67b8a4b2e11bbb152f4c3ea 4ae437da4ebc96319c9da6c697222f9d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
_version_ |
1808916939889704960 |
spelling |
Sánchez Ccoyllo, OdónOrdoñez Aquino, CarolMuñoz, Ángel G.Llacza Rodríguez, AlanAndrade, María FátimaLiu, YangReátegui-Romero, WarrenBrasseur, Guy2021-06-25T20:23:55Z2021-06-25T20:23:55Z2018https://hdl.handle.net/20.500.12542/990https://hdl.handle.net/20.500.12542/990The Weather Research and Forecasting-Chemistry (WRFChem) model was used to develop an operational air quality forecast system for the Metropolitan Area of Lima-Callao (MALC), Peru, that is affected by high particulate matter concentrations episodes. In this work, we describe the implementation of an operational air quality-forecasting platform to be used in the elaboration of public policies by decision makers, and as a research tool to evaluate the formation and transport of air pollutants in the MALC. To examine the skills of this new system, an air pollution event in April 2016 exhibiting unusually elevated PM2.5 concentrations was simulated and compared against in situ air quality measurements. In addition, a Model Output Statistic (MOS) algorithm has been developed to improve outputs of inhalable particulate matter (PM10) and fine particulate matter (PM2.5) from the WRF-Chem model. The obtained results showed that MOS increased the accuracy in terms of mean normalized bias for PM10 and PM2.5 from -43.1% and 71.3% to 3.1%, 7.3%, respectively. In addition, the mean normalized gross error for PM10 and PM2.5 were reduced from 48% and 92.3% to 13.4% and 10.1%, respectively. The WRF-Chem Model results showed an appropriate relationship between of temperature and relative humidity with observations during April 2016. Mean normalized bias for temperature and relative humidity were approximately - 0.6% and 1.1% respectively. In addition, the mean normalized gross error for temperature and relative humidity were approximately 4.0% and 0.1% respectively. The results showed that this modelling system can be a useful tool for the analysis of air quality in MALC.application/pdfengPetra Christian UniversityPEhttp://jirae.petra.ac.id/index.php/jirae/indexinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIContaminación AmbientalCalidad del AireCalidad AmbientalContaminantes AtmosféricosAnálisis de ContaminantesModelos y SimulaciónWRF-Chem Modelhttps://purl.org/pe-repo/ocde/ford#1.05.08https://purl.org/pe-repo/ocde/ford#1.05.09contaminacion del aire - Aire y AtmósferaModeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016info:eu-repo/semantics/articletext/publicacion cientificaORIGINALModeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdfModeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdfTexto Completoapplication/pdf1682125http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/1/Modeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf5788fbebdbe38555d9aac48d85b6c687MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTModeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf.txtModeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf.txtExtracted texttext/plain46807http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/4/Modeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf.txt2a94debae67b8a4b2e11bbb152f4c3eaMD54THUMBNAILModeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf.jpgModeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf.jpgGenerated Thumbnailimage/jpeg7566http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/990/5/Modeling-study-of-the-particulate-matter-in-Lima-with-the-WRF-Chem-model-case-study-of-april-2016.pdf.jpg4ae437da4ebc96319c9da6c697222f9dMD5520.500.12542/990oai:repositorio.senamhi.gob.pe:20.500.12542/9902024-08-21 10:43:20.707Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.958958 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).