Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
Descripción del Articulo
In soil erosion estimation models, the variable with the greatest impact is rainfall erosivity (RE), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (ED), which relates RE to precipitation. The RE requires high temporal resolution r...
| Autores: | , , , , , |
|---|---|
| Formato: | informe técnico |
| Fecha de Publicación: | 2023 |
| Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
| Repositorio: | SENAMHI-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/2964 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12542/2964 https://www.preprints.org/manuscript/202308.0579/v1 |
| Nivel de acceso: | acceso abierto |
| Materia: | Suelo Agrícola Erosión de Suelos https://purl.org/pe-repo/ocde/ford#1.05.09 erosion de suelos - Suelo y tierra |
| id |
SEAM_17910bac509107b8ec819c34ffe27051 |
|---|---|
| oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/2964 |
| network_acronym_str |
SEAM |
| network_name_str |
SENAMHI-Institucional |
| repository_id_str |
4818 |
| dc.title.es_PE.fl_str_mv |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020) |
| title |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020) |
| spellingShingle |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020) Gutierrez, Leonardo Suelo Agrícola Erosión de Suelos https://purl.org/pe-repo/ocde/ford#1.05.09 erosion de suelos - Suelo y tierra |
| title_short |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020) |
| title_full |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020) |
| title_fullStr |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020) |
| title_full_unstemmed |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020) |
| title_sort |
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020) |
| author |
Gutierrez, Leonardo |
| author_facet |
Gutierrez, Leonardo Huerta, Adrian Sabino, Evelin Bourrel, Luc Frappart, Frederic Lavado-Casimiro, W. |
| author_role |
author |
| author2 |
Huerta, Adrian Sabino, Evelin Bourrel, Luc Frappart, Frederic Lavado-Casimiro, W. |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Gutierrez, Leonardo Huerta, Adrian Sabino, Evelin Bourrel, Luc Frappart, Frederic Lavado-Casimiro, W. |
| dc.subject.es_PE.fl_str_mv |
Suelo Agrícola Erosión de Suelos |
| topic |
Suelo Agrícola Erosión de Suelos https://purl.org/pe-repo/ocde/ford#1.05.09 erosion de suelos - Suelo y tierra |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.09 |
| dc.subject.sinia.none.fl_str_mv |
erosion de suelos - Suelo y tierra |
| description |
In soil erosion estimation models, the variable with the greatest impact is rainfall erosivity (RE), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (ED), which relates RE to precipitation. The RE requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for RE estimation. This study evaluates the performance of a new gridded dataset of RE and ED in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000-2020. By using this method, a correlation of 0.7 was found between the PISCO_reed and RE obtained by the observed data. An average annual RE for Peru of 4831 M Jmmha−1h −1 was estimated with a general increase towards the lowland Amazon regions and high values are found on the north-coast Pacific area of Peru. The spatial identification of the most risk areas of erosion, was carried out through a relationship between the ED and rainfall. Both erosivity data sets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-10-27T20:05:05Z |
| dc.date.available.none.fl_str_mv |
2023-10-27T20:05:05Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/report |
| dc.type.sinia.es_PE.fl_str_mv |
text/publicacion cientifica |
| format |
report |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/2964 |
| dc.identifier.doi.none.fl_str_mv |
https://www.preprints.org/manuscript/202308.0579/v1 |
| dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/2964 https://hdl.handle.net/20.500.12542/2964 https://hdl.handle.net/20.500.12542/2964 |
| url |
https://hdl.handle.net/20.500.12542/2964 https://www.preprints.org/manuscript/202308.0579/v1 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Servicio Nacional de Meteorología e Hidrología del Perú |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
| dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
| instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
| instacron_str |
SENAMHI |
| institution |
SENAMHI |
| reponame_str |
SENAMHI-Institucional |
| collection |
SENAMHI-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/1/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/2/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/3/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/4/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
4d43a08da9cd3f07888b27710078ba8e 8a4605be74aa9ea9d79846c1fba20a33 0c698fa9d9b08f022972449e486bae66 6ed08b48598234221da9dd086a1fcb4b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
| repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
| _version_ |
1815892909574062080 |
| spelling |
Gutierrez, LeonardoHuerta, AdrianSabino, EvelinBourrel, LucFrappart, FredericLavado-Casimiro, W.2023-10-27T20:05:05Z2023-10-27T20:05:05Z2023https://hdl.handle.net/20.500.12542/2964https://www.preprints.org/manuscript/202308.0579/v1https://hdl.handle.net/20.500.12542/2964https://hdl.handle.net/20.500.12542/2964https://hdl.handle.net/20.500.12542/2964In soil erosion estimation models, the variable with the greatest impact is rainfall erosivity (RE), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (ED), which relates RE to precipitation. The RE requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for RE estimation. This study evaluates the performance of a new gridded dataset of RE and ED in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000-2020. By using this method, a correlation of 0.7 was found between the PISCO_reed and RE obtained by the observed data. An average annual RE for Peru of 4831 M Jmmha−1h −1 was estimated with a general increase towards the lowland Amazon regions and high values are found on the north-coast Pacific area of Peru. The spatial identification of the most risk areas of erosion, was carried out through a relationship between the ED and rainfall. Both erosivity data sets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision.application/pdfspaServicio Nacional de Meteorología e Hidrología del Perúinfo:eu-repo/semantics/openAccessRepositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHISuelo AgrícolaErosión de Sueloshttps://purl.org/pe-repo/ocde/ford#1.05.09erosion de suelos - Suelo y tierraRainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)info:eu-repo/semantics/reporttext/publicacion cientificaORIGINALRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdfRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdfTexto Completoapplication/pdf12745484http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/1/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf4d43a08da9cd3f07888b27710078ba8eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.txtRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.txtExtracted texttext/plain79181http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/3/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.txt0c698fa9d9b08f022972449e486bae66MD53THUMBNAILRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.jpgRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.jpgGenerated Thumbnailimage/jpeg5593http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/4/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.jpg6ed08b48598234221da9dd086a1fcb4bMD5420.500.12542/2964oai:repositorio.senamhi.gob.pe:20.500.12542/29642024-11-04 16:48:53.41Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.892819 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).