Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)

Descripción del Articulo

In soil erosion estimation models, the variable with the greatest impact is rainfall erosivity (RE), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (ED), which relates RE to precipitation. The RE requires high temporal resolution r...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez, Leonardo, Huerta, Adrian, Sabino, Evelin, Bourrel, Luc, Frappart, Frederic, Lavado-Casimiro, W.
Formato: informe técnico
Fecha de Publicación:2023
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/2964
Enlace del recurso:https://hdl.handle.net/20.500.12542/2964
https://www.preprints.org/manuscript/202308.0579/v1
Nivel de acceso:acceso abierto
Materia:Suelo Agrícola
Erosión de Suelos
https://purl.org/pe-repo/ocde/ford#1.05.09
erosion de suelos - Suelo y tierra
id SEAM_17910bac509107b8ec819c34ffe27051
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/2964
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.es_PE.fl_str_mv Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
title Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
spellingShingle Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
Gutierrez, Leonardo
Suelo Agrícola
Erosión de Suelos
https://purl.org/pe-repo/ocde/ford#1.05.09
erosion de suelos - Suelo y tierra
title_short Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
title_full Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
title_fullStr Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
title_full_unstemmed Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
title_sort Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)
author Gutierrez, Leonardo
author_facet Gutierrez, Leonardo
Huerta, Adrian
Sabino, Evelin
Bourrel, Luc
Frappart, Frederic
Lavado-Casimiro, W.
author_role author
author2 Huerta, Adrian
Sabino, Evelin
Bourrel, Luc
Frappart, Frederic
Lavado-Casimiro, W.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Gutierrez, Leonardo
Huerta, Adrian
Sabino, Evelin
Bourrel, Luc
Frappart, Frederic
Lavado-Casimiro, W.
dc.subject.es_PE.fl_str_mv Suelo Agrícola
Erosión de Suelos
topic Suelo Agrícola
Erosión de Suelos
https://purl.org/pe-repo/ocde/ford#1.05.09
erosion de suelos - Suelo y tierra
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.09
dc.subject.sinia.none.fl_str_mv erosion de suelos - Suelo y tierra
description In soil erosion estimation models, the variable with the greatest impact is rainfall erosivity (RE), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (ED), which relates RE to precipitation. The RE requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for RE estimation. This study evaluates the performance of a new gridded dataset of RE and ED in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000-2020. By using this method, a correlation of 0.7 was found between the PISCO_reed and RE obtained by the observed data. An average annual RE for Peru of 4831 M Jmmha−1h −1 was estimated with a general increase towards the lowland Amazon regions and high values are found on the north-coast Pacific area of Peru. The spatial identification of the most risk areas of erosion, was carried out through a relationship between the ED and rainfall. Both erosivity data sets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-27T20:05:05Z
dc.date.available.none.fl_str_mv 2023-10-27T20:05:05Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/report
dc.type.sinia.es_PE.fl_str_mv text/publicacion cientifica
format report
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/2964
dc.identifier.doi.none.fl_str_mv https://www.preprints.org/manuscript/202308.0579/v1
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/2964
https://hdl.handle.net/20.500.12542/2964
https://hdl.handle.net/20.500.12542/2964
url https://hdl.handle.net/20.500.12542/2964
https://www.preprints.org/manuscript/202308.0579/v1
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/1/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/2/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/3/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/4/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.jpg
bitstream.checksum.fl_str_mv 4d43a08da9cd3f07888b27710078ba8e
8a4605be74aa9ea9d79846c1fba20a33
0c698fa9d9b08f022972449e486bae66
6ed08b48598234221da9dd086a1fcb4b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1815892909574062080
spelling Gutierrez, LeonardoHuerta, AdrianSabino, EvelinBourrel, LucFrappart, FredericLavado-Casimiro, W.2023-10-27T20:05:05Z2023-10-27T20:05:05Z2023https://hdl.handle.net/20.500.12542/2964https://www.preprints.org/manuscript/202308.0579/v1https://hdl.handle.net/20.500.12542/2964https://hdl.handle.net/20.500.12542/2964https://hdl.handle.net/20.500.12542/2964In soil erosion estimation models, the variable with the greatest impact is rainfall erosivity (RE), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (ED), which relates RE to precipitation. The RE requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for RE estimation. This study evaluates the performance of a new gridded dataset of RE and ED in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000-2020. By using this method, a correlation of 0.7 was found between the PISCO_reed and RE obtained by the observed data. An average annual RE for Peru of 4831 M Jmmha−1h −1 was estimated with a general increase towards the lowland Amazon regions and high values are found on the north-coast Pacific area of Peru. The spatial identification of the most risk areas of erosion, was carried out through a relationship between the ED and rainfall. Both erosivity data sets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision.application/pdfspaServicio Nacional de Meteorología e Hidrología del Perúinfo:eu-repo/semantics/openAccessRepositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHISuelo AgrícolaErosión de Sueloshttps://purl.org/pe-repo/ocde/ford#1.05.09erosion de suelos - Suelo y tierraRainfall Erosivity in Peru: A New Gridded Dataset Based on GPMIMERG and Comprehensive Assessment (2000–2020)info:eu-repo/semantics/reporttext/publicacion cientificaORIGINALRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdfRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdfTexto Completoapplication/pdf12745484http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/1/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf4d43a08da9cd3f07888b27710078ba8eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.txtRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.txtExtracted texttext/plain79181http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/3/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.txt0c698fa9d9b08f022972449e486bae66MD53THUMBNAILRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.jpgRainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.jpgGenerated Thumbnailimage/jpeg5593http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/2964/4/Rainfall-Erosivity-in-Peru-new-Gridded-Dataset-Based-GPMIMERG-ago_2023.pdf.jpg6ed08b48598234221da9dd086a1fcb4bMD5420.500.12542/2964oai:repositorio.senamhi.gob.pe:20.500.12542/29642024-11-04 16:48:53.41Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.892819
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).