PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU

Descripción del Articulo

El objetivo de esta investigación es la predicción de caudales en la cuenca experimental del rio Ichu, mediante un modelo de red neuronal artificial exógeno autorregresivo no lineal (NARX). El área de estudio es la cuenca experimental del rio Ichu con un área de 620.10 km2, ubicado en la ciudad de H...

Descripción completa

Detalles Bibliográficos
Autor: Oré Cayetano, Richard
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional de Huancavelica
Repositorio:UNH-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unh.edu.pe:20.500.14597/3203
Enlace del recurso:http://repositorio.unh.edu.pe/handle/UNH/3203
Nivel de acceso:acceso abierto
Materia:Predicción de caudales
red neuronal autorregresiva no lineal con entrada exógena (NARX)
precipitación remota.
Infraestructura Hidráulica Saneamiento y Medio Ambiente
id RUNH_10c1ae76a6d8a6cb3a8eacff6b159924
oai_identifier_str oai:repositorio.unh.edu.pe:20.500.14597/3203
network_acronym_str RUNH
network_name_str UNH-Institucional
repository_id_str .
dc.title.es_PE.fl_str_mv PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU
title PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU
spellingShingle PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU
Oré Cayetano, Richard
Predicción de caudales
red neuronal autorregresiva no lineal con entrada exógena (NARX)
precipitación remota.
Infraestructura Hidráulica Saneamiento y Medio Ambiente
title_short PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU
title_full PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU
title_fullStr PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU
title_full_unstemmed PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU
title_sort PREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHU
author Oré Cayetano, Richard
author_facet Oré Cayetano, Richard
author_role author
dc.contributor.advisor.fl_str_mv Ayala Bizarro, Iván Arturo
dc.contributor.author.fl_str_mv Oré Cayetano, Richard
dc.subject.none.fl_str_mv Predicción de caudales
red neuronal autorregresiva no lineal con entrada exógena (NARX)
precipitación remota.
topic Predicción de caudales
red neuronal autorregresiva no lineal con entrada exógena (NARX)
precipitación remota.
Infraestructura Hidráulica Saneamiento y Medio Ambiente
dc.subject.ocde.es_PE.fl_str_mv Infraestructura Hidráulica Saneamiento y Medio Ambiente
description El objetivo de esta investigación es la predicción de caudales en la cuenca experimental del rio Ichu, mediante un modelo de red neuronal artificial exógeno autorregresivo no lineal (NARX). El área de estudio es la cuenca experimental del rio Ichu con un área de 620.10 km2, ubicado en la ciudad de Huancavelica región centro del Perú. Se desarrolló tres modelos de redes neuronales tipo NARX entrenados y validados, denominados NARX-CHIRPS, NARX-PISCO y NARX-GPM; teniendo como entradas externas cada productos de precipitación remota a escala diaria (CHIRPS v2, PISCO v2, GPM-IMERG v7). Para comparar los datos de estos productos con los datos de estaciones terrestres se usaron tres índices estadísticos, la raíz del error cuadrático medio (RMSE), suma cuadrada de residuos (SSE) y el Coeficiente de determinación (R2). Con los trabajos de campo (aforos realizados) y registro de niveles, se ha calibrado y obtenido al ecuación de descarga (altura-caudal) en la sección de aforo del rio Ichu para transformar niveles de flujo en caudales. Finalmente en esta investigación se comparó lo observado y lo predicho con los modelos NARX-CHIRPS, NARX-PISCO y NARX-GPM, en un conjunto Independiente de datos que no fueron utilizados en el entrenamiento ni en la validación de los tres modelos, los estadísticos analizados fueron la raíz del Error cuadrático medio (RMSE), suma cuadrada de residuos (SSE) y dieron Como resultados que los modelos tipo NARX, pueden predecir con éxito el Caudal del rio Ichu en un intervalo de tiempo de 1 a 2 días de anticipación con valores de contabilidad de 0.99, predicciones hasta el día 4 con valores de confiabilidad entre 0.727-0.905 y superior a los 4 días la confiabilidad nula, todo en función de las cantidades actuales de precipitación remota diaria. Palabras claves: Predicción de caudales, red neuronal autorregresiva no lineal con entrada exógena (NARX), precipitación remota.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-10-14T17:26:16Z
dc.date.available.none.fl_str_mv 2020-10-14T17:26:16Z
dc.date.issued.fl_str_mv 2019-12-10
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.unh.edu.pe/handle/UNH/3203
url http://repositorio.unh.edu.pe/handle/UNH/3203
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional de Huancavelica
dc.publisher.country.none.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Nacional de Huancavelica
Repositorio Institucional - UNH
dc.source.none.fl_str_mv reponame:UNH-Institucional
instname:Universidad Nacional de Huancavelica
instacron:UNH
instname_str Universidad Nacional de Huancavelica
instacron_str UNH
institution UNH
reponame_str UNH-Institucional
collection UNH-Institucional
bitstream.url.fl_str_mv https://repositorio.unh.edu.pe/bitstreams/49ab2d58-155b-4d94-8fdb-caa08efda57d/download
https://repositorio.unh.edu.pe/bitstreams/30b165c7-cdcb-4d82-9a96-5049209ac9a1/download
https://repositorio.unh.edu.pe/bitstreams/b0e375a6-c827-4254-b66e-e16194c208bd/download
https://repositorio.unh.edu.pe/bitstreams/e9ad210d-69e1-4582-9605-85fab9107b40/download
bitstream.checksum.fl_str_mv 0a703d871bf062c5fdc7850b1496693b
c52066b9c50a8f86be96c82978636682
8bc83de985fe6df8c939d84a99e2fed4
3e9565ea7221954c0c94be8cc3b58a04
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Universidad Nacional de Huancavelica
repository.mail.fl_str_mv repositorio@unh.edu.pe
_version_ 1846063380471742464
spelling Ayala Bizarro, Iván ArturoOré Cayetano, Richard2020-10-14T17:26:16Z2020-10-14T17:26:16Z2019-12-10El objetivo de esta investigación es la predicción de caudales en la cuenca experimental del rio Ichu, mediante un modelo de red neuronal artificial exógeno autorregresivo no lineal (NARX). El área de estudio es la cuenca experimental del rio Ichu con un área de 620.10 km2, ubicado en la ciudad de Huancavelica región centro del Perú. Se desarrolló tres modelos de redes neuronales tipo NARX entrenados y validados, denominados NARX-CHIRPS, NARX-PISCO y NARX-GPM; teniendo como entradas externas cada productos de precipitación remota a escala diaria (CHIRPS v2, PISCO v2, GPM-IMERG v7). Para comparar los datos de estos productos con los datos de estaciones terrestres se usaron tres índices estadísticos, la raíz del error cuadrático medio (RMSE), suma cuadrada de residuos (SSE) y el Coeficiente de determinación (R2). Con los trabajos de campo (aforos realizados) y registro de niveles, se ha calibrado y obtenido al ecuación de descarga (altura-caudal) en la sección de aforo del rio Ichu para transformar niveles de flujo en caudales. Finalmente en esta investigación se comparó lo observado y lo predicho con los modelos NARX-CHIRPS, NARX-PISCO y NARX-GPM, en un conjunto Independiente de datos que no fueron utilizados en el entrenamiento ni en la validación de los tres modelos, los estadísticos analizados fueron la raíz del Error cuadrático medio (RMSE), suma cuadrada de residuos (SSE) y dieron Como resultados que los modelos tipo NARX, pueden predecir con éxito el Caudal del rio Ichu en un intervalo de tiempo de 1 a 2 días de anticipación con valores de contabilidad de 0.99, predicciones hasta el día 4 con valores de confiabilidad entre 0.727-0.905 y superior a los 4 días la confiabilidad nula, todo en función de las cantidades actuales de precipitación remota diaria. Palabras claves: Predicción de caudales, red neuronal autorregresiva no lineal con entrada exógena (NARX), precipitación remota.Tesisapplication/pdfhttp://repositorio.unh.edu.pe/handle/UNH/3203spaUniversidad Nacional de HuancavelicaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Nacional de HuancavelicaRepositorio Institucional - UNHreponame:UNH-Institucionalinstname:Universidad Nacional de Huancavelicainstacron:UNHPredicción de caudales red neuronal autorregresiva no lineal con entrada exógena (NARX) precipitación remota.Infraestructura Hidráulica Saneamiento y Medio AmbientePREDICCIÓN DE CAUDALES MEDIANTE REDES NEURONALES ARTIFICIALES EMPLEANDO INFORMACION DE SENSORES REMOTOS EN LA CUENCA EXPERIMENTAL DEL RÍO ICHUinfo:eu-repo/semantics/bachelorThesisSUNEDUIngeniería CivilUniversidad Nacional de Huancavelica. Facultad de Ciencias de IngenieríaTitulo ProfesionalTitulo Profesional : Ingeniero CivilIngeniería CivilCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81089https://repositorio.unh.edu.pe/bitstreams/49ab2d58-155b-4d94-8fdb-caa08efda57d/download0a703d871bf062c5fdc7850b1496693bMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unh.edu.pe/bitstreams/30b165c7-cdcb-4d82-9a96-5049209ac9a1/downloadc52066b9c50a8f86be96c82978636682MD53ORIGINALTESIS-2019-ING. CIVIL-ORÉ CAYETANO.pdfTESIS-2019-ING. CIVIL-ORÉ CAYETANO.pdfapplication/pdf48485410https://repositorio.unh.edu.pe/bitstreams/b0e375a6-c827-4254-b66e-e16194c208bd/download8bc83de985fe6df8c939d84a99e2fed4MD51TEXTTESIS-2019-ING. CIVIL-ORÉ CAYETANO.pdf.txtTESIS-2019-ING. CIVIL-ORÉ CAYETANO.pdf.txtExtracted texttext/plain384459https://repositorio.unh.edu.pe/bitstreams/e9ad210d-69e1-4582-9605-85fab9107b40/download3e9565ea7221954c0c94be8cc3b58a04MD5420.500.14597/3203oai:repositorio.unh.edu.pe:20.500.14597/32032020-10-23 11:31:03.985https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttps://repositorio.unh.edu.peUniversidad Nacional de Huancavelicarepositorio@unh.edu.pe77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg==
score 13.4721
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).