Las redes neuronales en la predicción de caudales de las cuencas hidrográficas de la región Junín

Descripción del Articulo

La presente investigación tuvo como problema de investigación: ¿Cuáles serían los resultados de las redes neuronales en la predicción de caudales de las cuencas hidrográficas de la región Junín, en el año 2024?, el objetivo fue: Determinar cuáles serían los resultados de las redes neuronales en la p...

Descripción completa

Detalles Bibliográficos
Autor: Sinche Yupanqui, Marliny
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Peruana Los Andes
Repositorio:UPLA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.upla.edu.pe:20.500.12848/8541
Enlace del recurso:https://hdl.handle.net/20.500.12848/8541
Nivel de acceso:acceso abierto
Materia:Redes neuronales
Cuencas hidrográficas
Predicción
Caudales
https://purl.org/pe-repo/ocde/ford#2.01.01
Descripción
Sumario:La presente investigación tuvo como problema de investigación: ¿Cuáles serían los resultados de las redes neuronales en la predicción de caudales de las cuencas hidrográficas de la región Junín, en el año 2024?, el objetivo fue: Determinar cuáles serían los resultados de las redes neuronales en la predicción de caudales de las cuencas hidrográficas de la región Junín, en el año 2024. La hipótesis fue que: Los resultados de las redes neuronales serían significativos en la predicción de caudales de las cuencas hidrográficas de la región Junín, en el año 2024. La investigación fue de método científico, de tipo básica, con un nivel explicativo y de diseño no experimental. La población estuvo constituida por las cuencas hidrográficas de la región Junín. La muestra estuvo conformada por la cuenca hidrográfica del Río Mantaro de la región Junín. El resultado más resaltante fue que las predicciones realizadas por la red neuronal competitiva para las subcuencas del Río Mantaro en 2024 muestran una precisión razonable en comparación con los valores reales de caudal. Las diferencias entre los caudales predichos y los reales oscilan entre -0.6 m³/s y 1.4 m³/s, con una media de diferencia de 0.3 m³/s y una desviación estándar de 0.6 m³/s. La conclusión más resaltante fue que el uso de redes neuronales para la predicción de caudales en las cuencas hidrográficas de la región Junín para el año 2024 ha demostrado ser una metodología efectiva, con ambas arquitecturas la red neuronal competitiva y la red neuronal recurrente (LSTM) proporcionando resultados valiosos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).