Fundamentos de data science y sus aplicaciones en distintas industrias
Descripción del Articulo
        Este trabajo de investigación tiene la finalidad de brindar una guía de aprendizaje de los conocimientos, a nivel general, que un profesional debe adquirir con la finalidad de desempeñarse como Data Scientist. A través de este trabajo, se inicia enunciando lo que es Data Science y lo que hace un Dat...
              
            
    
                        | Autor: | |
|---|---|
| Formato: | tesis de grado | 
| Fecha de Publicación: | 2020 | 
| Institución: | Pontificia Universidad Católica del Perú | 
| Repositorio: | PUCP-Institucional | 
| Lenguaje: | español | 
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/182999 | 
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/21236 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Procesamiento de datos Ciencia--Procesamiento de datos Planificación estratégica https://purl.org/pe-repo/ocde/ford#2.11.04 | 
| Sumario: | Este trabajo de investigación tiene la finalidad de brindar una guía de aprendizaje de los conocimientos, a nivel general, que un profesional debe adquirir con la finalidad de desempeñarse como Data Scientist. A través de este trabajo, se inicia enunciando lo que es Data Science y lo que hace un Data Scientist, y en base a esto discernir cinco categorías de actividades principales. Partiendo de estas cinco actividades se desarrollan los siguientes apartados del primer capítulo, en los que se presentan los conocimientos estadísticos, matemáticos e informáticos que se deben poseer vinculados a cada una de las actividades. Aunque es de mencionar que los conocimientos asociados a estas actividades principales son transversales entre sí para una correcta aplicación del Data Science. También, se debe tener en cuenta que este trabajo solo pretende brindar una pauta para los conocimientos base necesarios para desempeñarse en el área de Data Science, esto implica que no se profundiza en temas relacionados a algoritmos de modelos, de los cuales solo se harán mención por ser relevantes por sus aplicaciones. En el segundo capítulo se mencionan distintas aplicaciones del Data Science en cuatro industrias: servicios de salud, transporte, finanzas y e-commerce. En cada una de estos se muestran distintos casos de aplicación de Data Science entre los que están las predicciones, análisis de decisiones, detecciones de escenarios, optimizaciones, control de sistemas y sistemas de recomendaciones. En cada una de estos casos se refieren de forma concisa los procedimientos seguidos, pasando desde la recolección de los datos hasta el modelo de los mismos, y mencionando los resultados logrados. Finalmente, se presentan conclusiones recabadas de lo que implica una formación como Data Science en la actualidad, así de como su importancia en los campos de aplicación, más ahora, en tiempos donde hay más información disponible y mejores capacidades de cómputo. | 
|---|
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            