El Teorema del Límite Central Funcional con algunas aplicaciones a raíces unitarias con cambios estructurales
Descripción del Articulo
Hoy en día es una práctica estándar de trabajo empírico la aplicación de diferentes estadísticos de contraste de raíz unitaria. A pesar de ser un aspecto práctico, estos estadísticos poseen distribuciones complejas y no estándar que dependen de funcionales de ciertos procesos estocásticos y sus deri...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2013 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/117824 |
Enlace del recurso: | http://revistas.pucp.edu.pe/index.php/economia/article/view/6379/6433 https://doi.org/10.18800/economia.201301.004 |
Nivel de acceso: | acceso abierto |
Materia: | Prueba de Raíz Unitaria Quiebre Estructural Teorema del Límite Central Funcional Proceso Ornstein-Uhlenbeck https://purl.org/pe-repo/ocde/ford#5.02.01 |
Sumario: | Hoy en día es una práctica estándar de trabajo empírico la aplicación de diferentes estadísticos de contraste de raíz unitaria. A pesar de ser un aspecto práctico, estos estadísticos poseen distribuciones complejas y no estándar que dependen de funcionales de ciertos procesos estocásticos y sus derivaciones representan una barrera incluso para varios econometristas teóricos. Estas derivaciones están basadas en herramientas estadísticas fundamentales y rigurosas que no son (muy) bien conocidas por econometristas estándar. El presente artículo completa esta brecha al explicar en una forma simple una de estas herramientas fundamentales la cual es el Teorema del Límite Central Funcional. Por lo tanto, este documento analiza los fundamentos y la aplicabilidad de dos versiones del Teorema del Límite Central Funcional dentro del marco de una raíz unitaria con un quiebre estructural. La atención inicial se centra en la estructura probabilística de las series de tiempo propuesta por Phillips (1987a), la cual es aplicada por Perron (1989) para estudiar los efectos de un quiebre estructural (asumido) exógeno sobre la potencia de las pruebas Dickey-Fuller aumentadas y por Zivot y Andrews (1992) para criticar el supuesto de exogeneidad y proponer un método para estimar un punto de quiebre endógeno. Un método sistemático para tratar con aspectos de eficiencia es introducido por Perron y Rodríguez (2003), el cual extiende el enfoque de Mínimos Cuadrados Generalizados para eliminar los componentes determinísticos de Elliot et al. (1996). Se presenta además una aplicación empírica. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).