Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity

Descripción del Articulo

This study presents a systematic and reproducible methodology for the development and evaluation of hybrid hydrogels tailored for extrusion-based 3D bioprinting. To demonstrate the applicability of this approach, alginate and xanthan gum were selected as model materials, two of the most widely repor...

Descripción completa

Detalles Bibliográficos
Autores: Torres-Ayala, Lizardo K., Nakamatsu, Javier, Kim, Sueyon
Formato: artículo
Fecha de Publicación:2025
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/204094
Enlace del recurso:http://hdl.handle.net/20.500.14657/204094
https://doi.org/10.1007/s00289-025-05923-z
Nivel de acceso:acceso abierto
Materia:Bioimpresión
Reología (Biología)
Coloides
https://purl.org/pe-repo/ocde/ford#1.03.00
id RPUC_b3113784bf89ab3c280402e3361bf856
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/204094
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Torres-Ayala, Lizardo K.Nakamatsu, JavierKim, SueyonPontificia Universidad Católica del Perú. Departamento de Ciencias2025-08-20T21:59:38Z2025http://hdl.handle.net/20.500.14657/204094https://doi.org/10.1007/s00289-025-05923-zThis study presents a systematic and reproducible methodology for the development and evaluation of hybrid hydrogels tailored for extrusion-based 3D bioprinting. To demonstrate the applicability of this approach, alginate and xanthan gum were selected as model materials, two of the most widely reported polymers in the biofabrication literature. Rather than relying on empirical trial and error, the methodology integrates material screening, rheological and chemorheological analyses, predictive modeling, and experimental validation to address key challenges in reproducibility, print fdelity, and structural stability. The AL4XA4 formulation emerged as a robust candidate, exhibiting shear-thinning behavior, rapid thixotropic recovery, and adequate mechanical strength to maintain flament integrity during extrusion. Powerlaw-based modeling enabled the rational adjustment of extrusion pressures and nozzle confgurations, leading to consistent deposition with minimal defects. Although no living cells or biological additives were used, bioprinting protocols were applied to assess printability and structural performance. The material formed self-supporting flaments with unsupported spans up to 6 mm. Chemorheological testing confrmed the reinforcing efect of ionic cross-linking (1.5-3% CaCl2) in enhancing construct stability. This framework ofers a transferable strategy for standardized bioink development and structural benchmarking, paving the way for reproducible biofabrication in tissue engineering and related biomedical applications.application/pdfengSpringer NatureUSurn:issn:1436-2449info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Polymer Bulletin; Vol. 82, Issue 13 (2025)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPBioimpresiónReología (Biología)Coloideshttps://purl.org/pe-repo/ocde/ford#1.03.00Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelityinfo:eu-repo/semantics/articleArtículoORIGINALs00289-025-05923-z.pdfTexto completoapplication/pdf4119398https://repositorio.pucp.edu.pe/bitstreams/eaf3d670-60b2-4286-8df0-7969ba7f61d3/download17b6b543418cbc936ad97b96c27942fbMD51trueAnonymousREADTEXTs00289-025-05923-z.pdf.txts00289-025-05923-z.pdf.txtExtracted texttext/plain72089https://repositorio.pucp.edu.pe/bitstreams/e16735d8-83b4-4b71-ab5b-8c7c96952964/download3d6d5d7fee71ac62ea38e1170472d0f2MD52falseAnonymousREADTHUMBNAILs00289-025-05923-z.pdf.jpgs00289-025-05923-z.pdf.jpgIM Thumbnailimage/jpeg29594https://repositorio.pucp.edu.pe/bitstreams/f8f7f12b-cd36-40af-ae6b-199cf819e037/download155b5cbc9f850e7473ea6dd7ff779c37MD53falseAnonymousREAD20.500.14657/204094oai:repositorio.pucp.edu.pe:20.500.14657/2040942025-08-20 18:00:33.682http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.en_US.fl_str_mv Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity
title Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity
spellingShingle Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity
Torres-Ayala, Lizardo K.
Bioimpresión
Reología (Biología)
Coloides
https://purl.org/pe-repo/ocde/ford#1.03.00
title_short Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity
title_full Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity
title_fullStr Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity
title_full_unstemmed Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity
title_sort Rheological optimization of hybrid alginate-xanthan gum hydrogels for enhanced 3D bioprinting fidelity
author Torres-Ayala, Lizardo K.
author_facet Torres-Ayala, Lizardo K.
Nakamatsu, Javier
Kim, Sueyon
author_role author
author2 Nakamatsu, Javier
Kim, Sueyon
author2_role author
author
dc.contributor.affiliation.none.fl_str_mv Pontificia Universidad Católica del Perú. Departamento de Ciencias
dc.contributor.author.fl_str_mv Torres-Ayala, Lizardo K.
Nakamatsu, Javier
Kim, Sueyon
dc.subject.en_US.fl_str_mv Bioimpresión
Reología (Biología)
Coloides
topic Bioimpresión
Reología (Biología)
Coloides
https://purl.org/pe-repo/ocde/ford#1.03.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.03.00
description This study presents a systematic and reproducible methodology for the development and evaluation of hybrid hydrogels tailored for extrusion-based 3D bioprinting. To demonstrate the applicability of this approach, alginate and xanthan gum were selected as model materials, two of the most widely reported polymers in the biofabrication literature. Rather than relying on empirical trial and error, the methodology integrates material screening, rheological and chemorheological analyses, predictive modeling, and experimental validation to address key challenges in reproducibility, print fdelity, and structural stability. The AL4XA4 formulation emerged as a robust candidate, exhibiting shear-thinning behavior, rapid thixotropic recovery, and adequate mechanical strength to maintain flament integrity during extrusion. Powerlaw-based modeling enabled the rational adjustment of extrusion pressures and nozzle confgurations, leading to consistent deposition with minimal defects. Although no living cells or biological additives were used, bioprinting protocols were applied to assess printability and structural performance. The material formed self-supporting flaments with unsupported spans up to 6 mm. Chemorheological testing confrmed the reinforcing efect of ionic cross-linking (1.5-3% CaCl2) in enhancing construct stability. This framework ofers a transferable strategy for standardized bioink development and structural benchmarking, paving the way for reproducible biofabrication in tissue engineering and related biomedical applications.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-08-20T21:59:38Z
dc.date.issued.fl_str_mv 2025
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14657/204094
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s00289-025-05923-z
url http://hdl.handle.net/20.500.14657/204094
https://doi.org/10.1007/s00289-025-05923-z
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1436-2449
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Springer Nature
dc.publisher.country.none.fl_str_mv US
dc.source.es_ES.fl_str_mv Polymer Bulletin; Vol. 82, Issue 13 (2025)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/eaf3d670-60b2-4286-8df0-7969ba7f61d3/download
https://repositorio.pucp.edu.pe/bitstreams/e16735d8-83b4-4b71-ab5b-8c7c96952964/download
https://repositorio.pucp.edu.pe/bitstreams/f8f7f12b-cd36-40af-ae6b-199cf819e037/download
bitstream.checksum.fl_str_mv 17b6b543418cbc936ad97b96c27942fb
3d6d5d7fee71ac62ea38e1170472d0f2
155b5cbc9f850e7473ea6dd7ff779c37
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1841979827104514048
score 13.977305
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).