Design and development of hybrid polymeric bioinks for 3D bioprinting in tissue engineering

Descripción del Articulo

The formulation of materials for 3D bioprinting involves more than meeting isolated technical specifications. It demands a coordinated understanding of flow behavior, structural integrity, and biological performance. In extrusion-based biofabrication, this complexity becomes particularly visible: a...

Descripción completa

Detalles Bibliográficos
Autor: Torres Ayala, Lizardo Kendy
Formato: tesis de maestría
Fecha de Publicación:2025
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/32098
Enlace del recurso:http://hdl.handle.net/20.500.12404/32098
Nivel de acceso:acceso abierto
Materia:Bioimpresión
Impresión tridimensional
Ingeniería de tejidos
https://purl.org/pe-repo/ocde/ford#2.05.01
Descripción
Sumario:The formulation of materials for 3D bioprinting involves more than meeting isolated technical specifications. It demands a coordinated understanding of flow behavior, structural integrity, and biological performance. In extrusion-based biofabrication, this complexity becomes particularly visible: a printable hydrogel must deform under pressure, recover its shape after deposition, and remain stable long enough to support tissue formation. This thesis addresses that challenge through the development of a hybrid hydrogel based on alginate and xanthan gum. These polymers were selected for their complementary roles: alginate offers biocompatibility and ionic crosslinking capacity, while xanthan gum modulates viscosity and enhances mechanical response. The formulation process was guided by a systematic rheological framework, incorporating both rotational and oscillatory tests to characterize shear-thinning behavior, yield stress, and viscoelastic recovery parameters essential for anticipating performance under printing conditions. Beyond printability, the material was functionalized with curcumin, in both free and nanoparticle-loaded forms, to evaluate its potential for localized drug delivery. Swelling behavior, antibacterial activity, and release kinetics were analyzed to assess its suitability as a therapeutic reservoir. Finally, in vitro cytocompatibility was assessed using a human gastric epithelial cell line under ISO 10993-5 and ASTM F2739 guidelines, completing a multiscale evaluation of the system.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).