Teorema de reducción simplética de Marsden, Weinstein y Meyer

Descripción del Articulo

En el presente trabajo, se introducen: la teoría de grupo de Lie, el álgebra de Lie y la geometría simplética. Para obtener el resultado del teorema de reducción de Marsden, Weinstein y Meyer, se definió una aplicación de momento definida de la variedad M, para el dual del álgebra de Lie, para accio...

Descripción completa

Detalles Bibliográficos
Autor: Aro Huanacuni, Alex Youn
Formato: tesis de grado
Fecha de Publicación:2017
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:español
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/4898
Enlace del recurso:http://repositorio.unap.edu.pe/handle/20.500.14082/4898
Nivel de acceso:acceso abierto
Materia:Matemática
Geometría Sirnplética
Matemática pura
Descripción
Sumario:En el presente trabajo, se introducen: la teoría de grupo de Lie, el álgebra de Lie y la geometría simplética. Para obtener el resultado del teorema de reducción de Marsden, Weinstein y Meyer, se definió una aplicación de momento definida de la variedad M, para el dual del álgebra de Lie, para acciones Hamiltonianas de grupos de Lie G en una variedad simplética M, y el subgrupo de Lie (el estabilizador definida por acción coadjunta) que actúa libremente en el conjunto del nivel de la aplicación del momento para un determinado elemento del rango. Demostré que la reducción simplética, o cociente del conjunto del nivel entre subgrupo de Lie, admite una estructura simplética y cuya forma de grado 2 (forma simplética) es caracterizada en términos de la aplicación proyección y la inclusión. Finalmente, muestro algunos ejemplos de reducción y un resultado para acciones que conmutan en la variedad simplética
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).