Aplicación de la espectroscopía del infrarrojo cercano – NIRS – para determinar el valor nutritivo de variedades de alfalfa (Medicago sativa L) y trébol rojo (Trifolium pratense L)

Descripción del Articulo

The aim of this study was to determine the applicability of near infrared spectroscopy (NIRS) for the nutritional assessment of two important forage species in the country: alfalfa (Medicago sativa L) and red clover (Trifolium pratense L). For this, 75 samples of alfalfa varieties (SW 8210, WL 625HQ...

Descripción completa

Detalles Bibliográficos
Autores: Estupiñán M., Carlos, Carcelén C., Fernando, Hidalgo L., Víctor, Rojas E., David, Vera C., Oscar, López G., Sofía, Bezada Q., Sandra
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/19491
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/19491
Nivel de acceso:acceso abierto
Materia:NIRS
calibration
legume
proximal analysis
neutral detergent fibre
calibración
leguminosa
análisis proximal
fibra detergente neutra
Descripción
Sumario:The aim of this study was to determine the applicability of near infrared spectroscopy (NIRS) for the nutritional assessment of two important forage species in the country: alfalfa (Medicago sativa L) and red clover (Trifolium pratense L). For this, 75 samples of alfalfa varieties (SW 8210, WL 625HQ) and 75 of red clover varieties (Quiñequeli, Kendland) obtained from the paddocks of the IVITA El Mantaro Experimental Station, Junín region, Peru were used. Proximal analysis was performed determining the content of crude protein (CP), ether extract (EE), crude fibre (CF), total ash (TA) and neutral detergent fibre (NDF), and the spectrum was captured using NIRS equipment. The calibration and validation models were developed to estimate the predictive capacity using Partial Least Squares (PLS), and the accuracy and precision statistics used were the Correlation Coefficient (R), Determination Coefficient (R2), Root Mean Square Error of Calibration (RMSEC), Root Mean Square of Prediction Error (RMSEP), Ratio of Range to Error (RER) and Residual Predictive Deviation (RPD). The mathematical models obtained showed that the NIRS technique has a good predictive capacity for the nutritional components of CP, TA and NDF (R2: 0.97, 0.99, 0.94; RPD: 2.00, 2.17 and 2.00, respectively) for varieties of alfalfa and red clover.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).