Numerical and computational modeling of the Timoshenko beam subject to point loads

Descripción del Articulo

We studied the uniform stabilization of a class of Timoshenko systems with tip load at the free end of the beam. Our main result is to prove that the semigroup associated to this model is not exponentially stable. Moreover, we prove that the semigroup decays polynomially to zero. When the damping me...

Descripción completa

Detalles Bibliográficos
Autor: Acasiete Quispe, Frank Henry
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/15723
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15723
Nivel de acceso:acceso abierto
Materia:Diferential partial equations
beam
semigroup
polinomial stability
Ecuación Diferencial Parcial
viga
semigrupo
estabilidad polinomial
Descripción
Sumario:We studied the uniform stabilization of a class of Timoshenko systems with tip load at the free end of the beam. Our main result is to prove that the semigroup associated to this model is not exponentially stable. Moreover, we prove that the semigroup decays polynomially to zero. When the damping mechanism is efective only on the boundary of the rotational angle, the solution also decays polynomially with rate depending on the coecients of the problem. The objective of this work is to present in a didactic way the results obtained in the article [9], using the theory of semigroups used in [10] and also contribute with the numerical part seen in [1]
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).