RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU

Descripción del Articulo

Globally there are demand projection models that serve as the basis for energy planning since the 1970s. However, as most of these models affected to developed countries such models must be evaluated, complemented and improved in order to identify the Methodologies that best adapt to the particulari...

Descripción completa

Detalles Bibliográficos
Autores: Meza Segura, José Neil, Luyo-Kuong, Jaime
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/862
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/862
Nivel de acceso:acceso abierto
Materia:demanda residencial
rotación de stock
sustitución
mitigación GEI
residential demand
stock turnover
substitution
multicriteria
GHG mitigation
id REVUNI_f8a0c8e138846517dd84ab80cd226587
oai_identifier_str oai:oai:revistas.uni.edu.pe:article/862
network_acronym_str REVUNI
network_name_str Revistas - Universidad Nacional de Ingeniería
repository_id_str
dc.title.none.fl_str_mv RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU
Metodología de Pronóstico de la Demanda Residencial para el Planeamiento Energético de Largo Plazo en el Perú
title RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU
spellingShingle RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU
Meza Segura, José Neil
demanda residencial
rotación de stock
sustitución
mitigación GEI
residential demand
stock turnover
substitution
multicriteria
GHG mitigation
title_short RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU
title_full RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU
title_fullStr RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU
title_full_unstemmed RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU
title_sort RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERU
dc.creator.none.fl_str_mv Meza Segura, José Neil
Luyo-Kuong, Jaime
author Meza Segura, José Neil
author_facet Meza Segura, José Neil
Luyo-Kuong, Jaime
author_role author
author2 Luyo-Kuong, Jaime
author2_role author
dc.subject.none.fl_str_mv demanda residencial
rotación de stock
sustitución
mitigación GEI
residential demand
stock turnover
substitution
multicriteria
GHG mitigation
topic demanda residencial
rotación de stock
sustitución
mitigación GEI
residential demand
stock turnover
substitution
multicriteria
GHG mitigation
description Globally there are demand projection models that serve as the basis for energy planning since the 1970s. However, as most of these models affected to developed countries such models must be evaluated, complemented and improved in order to identify the Methodologies that best adapt to the particularities of a developing country such as Peru and at the same time meet the challenges posed by current energy systems such as the emergence of disruptive technologies and an international context to combat climate change. The objective of this article is to define a model of projection of the demand of the residential sector by integrating the end-use models through the rotation of stocks and the substitution model through multicriteria evaluation, which was specially designed for developing countries. They have identified the factors of net present value, investment cost, presentation quality and environmental impact in the model through multicriteria evaluation so that the levels of penetration and regression by sources can be obtained and integrated into a LEAP energy model and thus evaluate the entire energy matrix as a whole. The model was applied to the case study of the residential sector in Peru and the evolution of the energy consumption equipment park was determined; the level of replacement by source and technology; as well as its comparison with the results obtained through economic models and optimization of the end use.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Electrical Engineering and Power Systems
Ingeniería Eléctrica y Sistemas de Potencia
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/862
10.21754/tecnia.v30i2.862
url https://revistas.uni.edu.pe/index.php/tecnia/article/view/862
identifier_str_mv 10.21754/tecnia.v30i2.862
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/862/1409
https://revistas.uni.edu.pe/index.php/tecnia/article/view/862/1756
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv TECNIA; Vol. 30 No. 2 (2020); 33-45
TECNIA; Vol. 30 Núm. 2 (2020); 33-45
2309-0413
0375-7765
reponame:Revistas - Universidad Nacional de Ingeniería
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str Revistas - Universidad Nacional de Ingeniería
collection Revistas - Universidad Nacional de Ingeniería
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1833562779504607232
spelling RESIDENTIAL DEMAND FORECASTING METHODOLOGY FOR LONG-TERM ENERGY PLANNING IN PERUMetodología de Pronóstico de la Demanda Residencial para el Planeamiento Energético de Largo Plazo en el PerúMeza Segura, José NeilLuyo-Kuong, Jaimedemanda residencialrotación de stocksustituciónmitigación GEIresidential demandstock turnoversubstitutionmulticriteriaGHG mitigationGlobally there are demand projection models that serve as the basis for energy planning since the 1970s. However, as most of these models affected to developed countries such models must be evaluated, complemented and improved in order to identify the Methodologies that best adapt to the particularities of a developing country such as Peru and at the same time meet the challenges posed by current energy systems such as the emergence of disruptive technologies and an international context to combat climate change. The objective of this article is to define a model of projection of the demand of the residential sector by integrating the end-use models through the rotation of stocks and the substitution model through multicriteria evaluation, which was specially designed for developing countries. They have identified the factors of net present value, investment cost, presentation quality and environmental impact in the model through multicriteria evaluation so that the levels of penetration and regression by sources can be obtained and integrated into a LEAP energy model and thus evaluate the entire energy matrix as a whole. The model was applied to the case study of the residential sector in Peru and the evolution of the energy consumption equipment park was determined; the level of replacement by source and technology; as well as its comparison with the results obtained through economic models and optimization of the end use.A nivel mundial existen modelos de proyección de la demanda que sirven de base para el planeamiento energético desde los años 70. Sin embargo, como la mayoría de estos modelos pertenecen a países desarrollados dichos modelos deben ser evaluados, complementados y mejorados a fin de identificar las metodologías que mejor se adapten a las particularidades de un país en vías de desarrollo como el Perú y a la vez cumplan con los retos que plantean los sistemas energéticos actuales como la aparición de tecnologías disruptivas y un contexto internacional de lucha contra el cambio climático. El objetivo del presente artículo es definir un modelo de proyección de la demanda del sector residencial integrando los modelos de uso final mediante rotación de stocks y el modelo de sustitución mediante evaluación multicriterio, el cual fue especialmente diseñado para países en vías de desarrollo, se han identificado los factores de valor presente neto, costo de inversión, calidad de presentación e impacto ambiental en el modelo a través de la evaluación multicriterio de modo que se pueda obtener los niveles de penetración y regresión por fuentes y ser integrados en un modelo energético LEAP y así evaluar toda la matriz energética en su conjunto. El modelo se aplicó para el estudio de caso del sector residencial en Perú y se determinó tanto la evolución del parque de equipos de consumo energético; el nivel de sustitución por fuente y tecnología; así como, su comparación con los resultados obtenidos a través de modelos econométricos y de optimización del uso final.Universidad Nacional de Ingeniería2020-11-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionElectrical Engineering and Power SystemsIngeniería Eléctrica y Sistemas de Potenciaapplication/pdfapplication/xmlhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/86210.21754/tecnia.v30i2.862TECNIA; Vol. 30 No. 2 (2020); 33-45TECNIA; Vol. 30 Núm. 2 (2020); 33-452309-04130375-7765reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/862/1409https://revistas.uni.edu.pe/index.php/tecnia/article/view/862/1756info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/8622023-08-22T15:43:55Z
score 13.905324
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).