Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
Descripción del Articulo
Remote sensing with large-scale satellite images for precision studies in grasslands has spatial and spectral resolution limitations. Against this, using spectral signs and vegetation indices obtained with microsensors transported by unmanned aerial vehicles (UAV) constitutes a more accurate alterna...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/4496 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496 |
Nivel de acceso: | acceso abierto |
Materia: | Aerial biomass machine learning Unmanned Aerial Vehicle (UAV) Tolar Support Vector Machine Random Forest Biomasa aérea aprendizaje automático Vehículo Aéreo No Tripulado (VANT) tolar Máquina de Vectores Soporte (MVS) |
id |
REVUNITRU_af3dc249a1c32eec97d57c13f08b2f2e |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/4496 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
dc.title.none.fl_str_mv |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models Estimación de la biomasa de una comunidad vegetal altoandina utilizando imágenes multiespectrales adquiridas con sensores remotos UAV y modelos de Regresión Lineal Múltiple, Máquina de Vectores Soporte y Bosques Aleatorios |
title |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models |
spellingShingle |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models Estrada Zúñiga, Andrés C. Aerial biomass machine learning Unmanned Aerial Vehicle (UAV) Tolar Support Vector Machine Random Forest Biomasa aérea aprendizaje automático Vehículo Aéreo No Tripulado (VANT) tolar Máquina de Vectores Soporte (MVS) Random Forest |
title_short |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models |
title_full |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models |
title_fullStr |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models |
title_full_unstemmed |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models |
title_sort |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models |
dc.creator.none.fl_str_mv |
Estrada Zúñiga, Andrés C. Cárdenas Rodriguez, Jim Bejar Saya, Juan Víctor Ñaupari Vázquez, Javier Arturo |
author |
Estrada Zúñiga, Andrés C. |
author_facet |
Estrada Zúñiga, Andrés C. Cárdenas Rodriguez, Jim Bejar Saya, Juan Víctor Ñaupari Vázquez, Javier Arturo |
author_role |
author |
author2 |
Cárdenas Rodriguez, Jim Bejar Saya, Juan Víctor Ñaupari Vázquez, Javier Arturo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Aerial biomass machine learning Unmanned Aerial Vehicle (UAV) Tolar Support Vector Machine Random Forest Biomasa aérea aprendizaje automático Vehículo Aéreo No Tripulado (VANT) tolar Máquina de Vectores Soporte (MVS) Random Forest |
topic |
Aerial biomass machine learning Unmanned Aerial Vehicle (UAV) Tolar Support Vector Machine Random Forest Biomasa aérea aprendizaje automático Vehículo Aéreo No Tripulado (VANT) tolar Máquina de Vectores Soporte (MVS) Random Forest |
description |
Remote sensing with large-scale satellite images for precision studies in grasslands has spatial and spectral resolution limitations. Against this, using spectral signs and vegetation indices obtained with microsensors transported by unmanned aerial vehicles (UAV) constitutes a more accurate alternative for biomass estimation. In the fieldwork, images were acquired with microsensors, and fixed transects of 100 m were used where vegetation samples were collected. The photographs acquired with the UAV were processed in Pix 4D, Arc Gis, and algorithms elaborated in R programming language. The biomass estimation was carried out with Multiple Linear Regression, Vector Support Machine, and Random (Forest Random) models. The Random model showed a Kappa coefficient of 0.94 in the training set and 0.901 in the test set (R2 = 0.482). The Random Forest model predicted 3 g/pixel of MV for Puna grass in the rainy season and 2 g/pixel for the dry season; the predicted biomass for the Tola bush was 15 g/pixel of MV for both seasons of the year. The estimation of biomass/hectare for the tolar plant community with its tola shrub and Puna grass components was 6,535.88 kg/ha for the rainy season and 6,588.81 kg/ha for the dry season. The difference between the biomass estimated in the field and the biomass estimated with Random Forest was 5.48% for the rainy season and 9.63% for the dry season. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496 |
url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496/6747 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496/5061 |
dc.rights.none.fl_str_mv |
Derechos de autor 2022 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2022 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 13 Núm. 3 (2022): julio-septiembre; 301-310 Scientia Agropecuaria; Vol. 13 No. 3 (2022): julio-septiembre; 301-310 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841449081837191168 |
spelling |
Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests modelsEstimación de la biomasa de una comunidad vegetal altoandina utilizando imágenes multiespectrales adquiridas con sensores remotos UAV y modelos de Regresión Lineal Múltiple, Máquina de Vectores Soporte y Bosques AleatoriosEstrada Zúñiga, Andrés C. Cárdenas Rodriguez, Jim Bejar Saya, Juan Víctor Ñaupari Vázquez, Javier ArturoAerial biomassmachine learningUnmanned Aerial Vehicle (UAV)TolarSupport Vector MachineRandom ForestBiomasa aéreaaprendizaje automáticoVehículo Aéreo No Tripulado (VANT)tolarMáquina de Vectores Soporte (MVS)Random ForestRemote sensing with large-scale satellite images for precision studies in grasslands has spatial and spectral resolution limitations. Against this, using spectral signs and vegetation indices obtained with microsensors transported by unmanned aerial vehicles (UAV) constitutes a more accurate alternative for biomass estimation. In the fieldwork, images were acquired with microsensors, and fixed transects of 100 m were used where vegetation samples were collected. The photographs acquired with the UAV were processed in Pix 4D, Arc Gis, and algorithms elaborated in R programming language. The biomass estimation was carried out with Multiple Linear Regression, Vector Support Machine, and Random (Forest Random) models. The Random model showed a Kappa coefficient of 0.94 in the training set and 0.901 in the test set (R2 = 0.482). The Random Forest model predicted 3 g/pixel of MV for Puna grass in the rainy season and 2 g/pixel for the dry season; the predicted biomass for the Tola bush was 15 g/pixel of MV for both seasons of the year. The estimation of biomass/hectare for the tolar plant community with its tola shrub and Puna grass components was 6,535.88 kg/ha for the rainy season and 6,588.81 kg/ha for the dry season. The difference between the biomass estimated in the field and the biomass estimated with Random Forest was 5.48% for the rainy season and 9.63% for the dry season.La teledetección con imágenes satelitales de gran escala para estudios de precisión en pastizales presenta limitaciones en su resolución espacial y espectral; frente a ello el uso de signos espectrales e índices de vegetación obtenidos con microsensores transportados por vehículo aéreo no tripulado (VANT) constituyen una alternativa de mayor precisión para la estimación de biomasa. En el trabajo de campo, además de adquirir las imágenes con los microsensores, se utilizaron transectas fijas de 100 m donde se recolectaron muestras de vegetación. Las fotografías adquiridas con el VANT se procesaron en Pix 4D, Arc Gis y algoritmos elaborados en el lenguaje de programación R. La estimación de biomasa se realizó con los modelos de Regresión Lineal Múltiple, Máquina de Soporte Vectorial y Random (Bosques Aleatorios). El modelo Random mostró un coeficiente Kappa de 0,94 en el set entrenamiento y de 0,901 en el set de prueba (R2 = 0,482). El modelo Random Forest predijo 3 g/pixel de MV para césped de puna en la época de lluvia y 2 g/pixel para la época seca; la biomasa predicha para el arbusto de Tola fue de 15 g/pixel de MV para ambas épocas del año. La estimación de biomasa/hectárea para la comunidad vegetal tolar con sus componentes arbusto de tola y césped de puna fue de 6535,88 kg/ha para la época de lluvia y de 6588,81 kg/ha para la época seca. La diferencia entre las estimaciones de biomasa en campo y la estimación con Random Forest fue de 5,48% para época de lluvia y de 9,63% para época de estiaje.Universidad Nacional de Trujillo2022-10-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496Scientia Agropecuaria; Vol. 13 Núm. 3 (2022): julio-septiembre; 301-310Scientia Agropecuaria; Vol. 13 No. 3 (2022): julio-septiembre; 301-3102306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496/6747https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496/5061Derechos de autor 2022 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/44962022-08-08T14:02:01Z |
score |
13.10263 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).