Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models

Descripción del Articulo

Remote sensing with large-scale satellite images for precision studies in grasslands has spatial and spectral resolution limitations. Against this, using spectral signs and vegetation indices obtained with microsensors transported by unmanned aerial vehicles (UAV) constitutes a more accurate alterna...

Descripción completa

Detalles Bibliográficos
Autores: Estrada Zúñiga, Andrés C., Cárdenas Rodriguez, Jim, Bejar Saya, Juan Víctor, Ñaupari Vázquez, Javier Arturo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4496
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496
Nivel de acceso:acceso abierto
Materia:Aerial biomass
machine learning
Unmanned Aerial Vehicle (UAV)
Tolar
Support Vector Machine
Random Forest
Biomasa aérea
aprendizaje automático
Vehículo Aéreo No Tripulado (VANT)
tolar
Máquina de Vectores Soporte (MVS)
id REVUNITRU_af3dc249a1c32eec97d57c13f08b2f2e
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/4496
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
Estimación de la biomasa de una comunidad vegetal altoandina utilizando imágenes multiespectrales adquiridas con sensores remotos UAV y modelos de Regresión Lineal Múltiple, Máquina de Vectores Soporte y Bosques Aleatorios
title Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
spellingShingle Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
Estrada Zúñiga, Andrés C.
Aerial biomass
machine learning
Unmanned Aerial Vehicle (UAV)
Tolar
Support Vector Machine
Random Forest
Biomasa aérea
aprendizaje automático
Vehículo Aéreo No Tripulado (VANT)
tolar
Máquina de Vectores Soporte (MVS)
Random Forest
title_short Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
title_full Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
title_fullStr Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
title_full_unstemmed Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
title_sort Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models
dc.creator.none.fl_str_mv Estrada Zúñiga, Andrés C.
Cárdenas Rodriguez, Jim
Bejar Saya, Juan Víctor
Ñaupari Vázquez, Javier Arturo
author Estrada Zúñiga, Andrés C.
author_facet Estrada Zúñiga, Andrés C.
Cárdenas Rodriguez, Jim
Bejar Saya, Juan Víctor
Ñaupari Vázquez, Javier Arturo
author_role author
author2 Cárdenas Rodriguez, Jim
Bejar Saya, Juan Víctor
Ñaupari Vázquez, Javier Arturo
author2_role author
author
author
dc.subject.none.fl_str_mv Aerial biomass
machine learning
Unmanned Aerial Vehicle (UAV)
Tolar
Support Vector Machine
Random Forest
Biomasa aérea
aprendizaje automático
Vehículo Aéreo No Tripulado (VANT)
tolar
Máquina de Vectores Soporte (MVS)
Random Forest
topic Aerial biomass
machine learning
Unmanned Aerial Vehicle (UAV)
Tolar
Support Vector Machine
Random Forest
Biomasa aérea
aprendizaje automático
Vehículo Aéreo No Tripulado (VANT)
tolar
Máquina de Vectores Soporte (MVS)
Random Forest
description Remote sensing with large-scale satellite images for precision studies in grasslands has spatial and spectral resolution limitations. Against this, using spectral signs and vegetation indices obtained with microsensors transported by unmanned aerial vehicles (UAV) constitutes a more accurate alternative for biomass estimation. In the fieldwork, images were acquired with microsensors, and fixed transects of 100 m were used where vegetation samples were collected. The photographs acquired with the UAV were processed in Pix 4D, Arc Gis, and algorithms elaborated in R programming language. The biomass estimation was carried out with Multiple Linear Regression, Vector Support Machine, and Random (Forest Random) models. The Random model showed a Kappa coefficient of 0.94 in the training set and 0.901 in the test set (R2 = 0.482). The Random Forest model predicted 3 g/pixel of MV for Puna grass in the rainy season and 2 g/pixel for the dry season; the predicted biomass for the Tola bush was 15 g/pixel of MV for both seasons of the year. The estimation of biomass/hectare for the tolar plant community with its tola shrub and Puna grass components was 6,535.88 kg/ha for the rainy season and 6,588.81 kg/ha for the dry season. The difference between the biomass estimated in the field and the biomass estimated with Random Forest was 5.48% for the rainy season and 9.63% for the dry season.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496/6747
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496/5061
dc.rights.none.fl_str_mv Derechos de autor 2022 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 13 Núm. 3 (2022): julio-septiembre; 301-310
Scientia Agropecuaria; Vol. 13 No. 3 (2022): julio-septiembre; 301-310
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841449081837191168
spelling Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests modelsEstimación de la biomasa de una comunidad vegetal altoandina utilizando imágenes multiespectrales adquiridas con sensores remotos UAV y modelos de Regresión Lineal Múltiple, Máquina de Vectores Soporte y Bosques AleatoriosEstrada Zúñiga, Andrés C. Cárdenas Rodriguez, Jim Bejar Saya, Juan Víctor Ñaupari Vázquez, Javier ArturoAerial biomassmachine learningUnmanned Aerial Vehicle (UAV)TolarSupport Vector MachineRandom ForestBiomasa aéreaaprendizaje automáticoVehículo Aéreo No Tripulado (VANT)tolarMáquina de Vectores Soporte (MVS)Random ForestRemote sensing with large-scale satellite images for precision studies in grasslands has spatial and spectral resolution limitations. Against this, using spectral signs and vegetation indices obtained with microsensors transported by unmanned aerial vehicles (UAV) constitutes a more accurate alternative for biomass estimation. In the fieldwork, images were acquired with microsensors, and fixed transects of 100 m were used where vegetation samples were collected. The photographs acquired with the UAV were processed in Pix 4D, Arc Gis, and algorithms elaborated in R programming language. The biomass estimation was carried out with Multiple Linear Regression, Vector Support Machine, and Random (Forest Random) models. The Random model showed a Kappa coefficient of 0.94 in the training set and 0.901 in the test set (R2 = 0.482). The Random Forest model predicted 3 g/pixel of MV for Puna grass in the rainy season and 2 g/pixel for the dry season; the predicted biomass for the Tola bush was 15 g/pixel of MV for both seasons of the year. The estimation of biomass/hectare for the tolar plant community with its tola shrub and Puna grass components was 6,535.88 kg/ha for the rainy season and 6,588.81 kg/ha for the dry season. The difference between the biomass estimated in the field and the biomass estimated with Random Forest was 5.48% for the rainy season and 9.63% for the dry season.La teledetección con imágenes satelitales de gran escala para estudios de precisión en pastizales presenta limitaciones en su resolución espacial y espectral; frente a ello el uso de signos espectrales e índices de vegetación obtenidos con microsensores transportados por vehículo aéreo no tripulado (VANT) constituyen una alternativa de mayor precisión para la estimación de biomasa. En el trabajo de campo, además de adquirir las imágenes con los microsensores, se utilizaron transectas fijas de 100 m donde se recolectaron muestras de vegetación. Las fotografías adquiridas con el VANT se procesaron en Pix 4D, Arc Gis y algoritmos elaborados en el lenguaje de programación R. La estimación de biomasa se realizó con los modelos de Regresión Lineal Múltiple, Máquina de Soporte Vectorial y Random (Bosques Aleatorios). El modelo Random mostró un coeficiente Kappa de 0,94 en el set entrenamiento y de 0,901 en el set de prueba (R2 = 0,482). El modelo Random Forest predijo 3 g/pixel de MV para césped de puna en la época de lluvia y 2 g/pixel para la época seca; la biomasa predicha para el arbusto de Tola fue de 15 g/pixel de MV para ambas épocas del año. La estimación de biomasa/hectárea para la comunidad vegetal tolar con sus componentes arbusto de tola y césped de puna fue de 6535,88 kg/ha para la época de lluvia y de 6588,81 kg/ha para la época seca. La diferencia entre las estimaciones de biomasa en campo y la estimación con Random Forest fue de 5,48% para época de lluvia y de 9,63% para época de estiaje.Universidad Nacional de Trujillo2022-10-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496Scientia Agropecuaria; Vol. 13 Núm. 3 (2022): julio-septiembre; 301-310Scientia Agropecuaria; Vol. 13 No. 3 (2022): julio-septiembre; 301-3102306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496/6747https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496/5061Derechos de autor 2022 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/44962022-08-08T14:02:01Z
score 13.10263
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).