Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery

Descripción del Articulo

The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a com...

Descripción completa

Detalles Bibliográficos
Autores: Pizarro Carcausto, Samuel Edwin, Pricope, Narcisa G., Figueroa Venegas, Deyanira Antonella, Carbajal Llosa, Carlos Miguel, Quispe Huincho, Miriam Rocío, Vera Vilchez, Jesús Emilio, Alejandro Méndez, Lidiana Rene, Achallma Mendoza, Lino, González Tovar, Izamar Estrella, Salazar Coronel, Wilian, Loayza, Hildo, Cruz Luis, Juancarlos Alejandro, Arbizu Berrocal, Carlos Irvin
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2290
Enlace del recurso:https://hdl.handle.net/20.500.12955/2290
https://doi.org/10.3390/rs15123203
Nivel de acceso:acceso abierto
Materia:Soil mapping
UAV
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.06
Soil surveys
Reconocimiento de suelos
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Descripción
Sumario:The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).