Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery

Descripción del Articulo

The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a com...

Descripción completa

Detalles Bibliográficos
Autores: Pizarro Carcausto, Samuel Edwin, Pricope, Narcisa G., Figueroa Venegas, Deyanira Antonella, Carbajal Llosa, Carlos Miguel, Quispe Huincho, Miriam Rocío, Vera Vilchez, Jesús Emilio, Alejandro Méndez, Lidiana Rene, Achallma Mendoza, Lino, González Tovar, Izamar Estrella, Salazar Coronel, Wilian, Loayza, Hildo, Cruz Luis, Juancarlos Alejandro, Arbizu Berrocal, Carlos Irvin
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2290
Enlace del recurso:https://hdl.handle.net/20.500.12955/2290
https://doi.org/10.3390/rs15123203
Nivel de acceso:acceso abierto
Materia:Soil mapping
UAV
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.06
Soil surveys
Reconocimiento de suelos
Unmanned aerial vehicles
Vehículos aéreos no tripulados
id INIA_e3aac0e9680298fb56be0236566da775
oai_identifier_str oai:null:20.500.12955/2290
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
title Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
spellingShingle Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
Pizarro Carcausto, Samuel Edwin
Soil mapping
UAV
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.06
Soil surveys
Reconocimiento de suelos
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Machine learning
title_short Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
title_full Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
title_fullStr Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
title_full_unstemmed Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
title_sort Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
author Pizarro Carcausto, Samuel Edwin
author_facet Pizarro Carcausto, Samuel Edwin
Pricope, Narcisa G.
Figueroa Venegas, Deyanira Antonella
Carbajal Llosa, Carlos Miguel
Quispe Huincho, Miriam Rocío
Vera Vilchez, Jesús Emilio
Alejandro Méndez, Lidiana Rene
Achallma Mendoza, Lino
González Tovar, Izamar Estrella
Salazar Coronel, Wilian
Loayza, Hildo
Cruz Luis, Juancarlos Alejandro
Arbizu Berrocal, Carlos Irvin
author_role author
author2 Pricope, Narcisa G.
Figueroa Venegas, Deyanira Antonella
Carbajal Llosa, Carlos Miguel
Quispe Huincho, Miriam Rocío
Vera Vilchez, Jesús Emilio
Alejandro Méndez, Lidiana Rene
Achallma Mendoza, Lino
González Tovar, Izamar Estrella
Salazar Coronel, Wilian
Loayza, Hildo
Cruz Luis, Juancarlos Alejandro
Arbizu Berrocal, Carlos Irvin
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Pizarro Carcausto, Samuel Edwin
Pricope, Narcisa G.
Figueroa Venegas, Deyanira Antonella
Carbajal Llosa, Carlos Miguel
Quispe Huincho, Miriam Rocío
Vera Vilchez, Jesús Emilio
Alejandro Méndez, Lidiana Rene
Achallma Mendoza, Lino
González Tovar, Izamar Estrella
Salazar Coronel, Wilian
Loayza, Hildo
Cruz Luis, Juancarlos Alejandro
Arbizu Berrocal, Carlos Irvin
dc.subject.es_PE.fl_str_mv Soil mapping
UAV
Google Earth Engine
Machine learning
Cloud computing
topic Soil mapping
UAV
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.06
Soil surveys
Reconocimiento de suelos
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Machine learning
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.06
dc.subject.agrovoc.es_PE.fl_str_mv Soil surveys
Reconocimiento de suelos
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Machine learning
description The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-31T17:37:23Z
dc.date.available.none.fl_str_mv 2023-08-31T17:37:23Z
dc.date.issued.fl_str_mv 2023-06-20
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Pizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs15123203
dc.identifier.issn.none.fl_str_mv 2072-4292
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2290
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/rs15123203
identifier_str_mv Pizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs15123203
2072-4292
url https://hdl.handle.net/20.500.12955/2290
https://doi.org/10.3390/rs15123203
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:2072-4292
dc.relation.ispartofseries.es_PE.fl_str_mv Remote sensing
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/4ef800b2-7dc6-4c45-82d6-ba6def867ef0/download
https://repositorio.inia.gob.pe/bitstreams/88787d9e-aec4-41de-bad9-b2920e63524b/download
https://repositorio.inia.gob.pe/bitstreams/c6b94896-9c47-45cd-bfa1-9ce80c66e342/download
https://repositorio.inia.gob.pe/bitstreams/e66fc39a-fbb2-4fc9-9a39-e1124ea7508e/download
bitstream.checksum.fl_str_mv 3293024676bf7b6d1e120f7a93521ca1
8a4605be74aa9ea9d79846c1fba20a33
30395214999f421f56243208b78648a0
67f9a7f8cf5ff711d87993a44c21b04a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331728004939776
spelling Pizarro Carcausto, Samuel EdwinPricope, Narcisa G.Figueroa Venegas, Deyanira AntonellaCarbajal Llosa, Carlos MiguelQuispe Huincho, Miriam RocíoVera Vilchez, Jesús EmilioAlejandro Méndez, Lidiana ReneAchallma Mendoza, LinoGonzález Tovar, Izamar EstrellaSalazar Coronel, WilianLoayza, HildoCruz Luis, Juancarlos AlejandroArbizu Berrocal, Carlos Irvin2023-08-31T17:37:23Z2023-08-31T17:37:23Z2023-06-20Pizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs151232032072-4292https://hdl.handle.net/20.500.12955/2290https://doi.org/10.3390/rs15123203The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions.application/pdfengMDPICHurn:issn:2072-4292Remote sensinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIASoil mappingUAVGoogle Earth EngineMachine learningCloud computinghttps://purl.org/pe-repo/ocde/ford#4.01.06Soil surveysReconocimiento de suelosUnmanned aerial vehiclesVehículos aéreos no tripuladosMachine learningImplementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imageryinfo:eu-repo/semantics/articleORIGINALPizarro_et-al_2023_soil_mapping.pdfPizarro_et-al_2023_soil_mapping.pdfArticle (English)application/pdf11363008https://repositorio.inia.gob.pe/bitstreams/4ef800b2-7dc6-4c45-82d6-ba6def867ef0/download3293024676bf7b6d1e120f7a93521ca1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/88787d9e-aec4-41de-bad9-b2920e63524b/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPizarro_et-al_2023_soil_mapping.pdf.txtPizarro_et-al_2023_soil_mapping.pdf.txtExtracted texttext/plain74330https://repositorio.inia.gob.pe/bitstreams/c6b94896-9c47-45cd-bfa1-9ce80c66e342/download30395214999f421f56243208b78648a0MD53THUMBNAILPizarro_et-al_2023_soil_mapping.pdf.jpgPizarro_et-al_2023_soil_mapping.pdf.jpgGenerated Thumbnailimage/jpeg1610https://repositorio.inia.gob.pe/bitstreams/e66fc39a-fbb2-4fc9-9a39-e1124ea7508e/download67f9a7f8cf5ff711d87993a44c21b04aMD5420.500.12955/2290oai:repositorio.inia.gob.pe:20.500.12955/22902023-08-31 12:37:25.321https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).