Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
Descripción del Articulo
The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a com...
| Autores: | , , , , , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:null:20.500.12955/2290 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12955/2290 https://doi.org/10.3390/rs15123203 |
| Nivel de acceso: | acceso abierto |
| Materia: | Soil mapping UAV Google Earth Engine Machine learning Cloud computing https://purl.org/pe-repo/ocde/ford#4.01.06 Soil surveys Reconocimiento de suelos Unmanned aerial vehicles Vehículos aéreos no tripulados |
| id |
INIA_e3aac0e9680298fb56be0236566da775 |
|---|---|
| oai_identifier_str |
oai:null:20.500.12955/2290 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.es_PE.fl_str_mv |
Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery |
| title |
Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery |
| spellingShingle |
Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery Pizarro Carcausto, Samuel Edwin Soil mapping UAV Google Earth Engine Machine learning Cloud computing https://purl.org/pe-repo/ocde/ford#4.01.06 Soil surveys Reconocimiento de suelos Unmanned aerial vehicles Vehículos aéreos no tripulados Machine learning |
| title_short |
Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery |
| title_full |
Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery |
| title_fullStr |
Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery |
| title_full_unstemmed |
Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery |
| title_sort |
Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery |
| author |
Pizarro Carcausto, Samuel Edwin |
| author_facet |
Pizarro Carcausto, Samuel Edwin Pricope, Narcisa G. Figueroa Venegas, Deyanira Antonella Carbajal Llosa, Carlos Miguel Quispe Huincho, Miriam Rocío Vera Vilchez, Jesús Emilio Alejandro Méndez, Lidiana Rene Achallma Mendoza, Lino González Tovar, Izamar Estrella Salazar Coronel, Wilian Loayza, Hildo Cruz Luis, Juancarlos Alejandro Arbizu Berrocal, Carlos Irvin |
| author_role |
author |
| author2 |
Pricope, Narcisa G. Figueroa Venegas, Deyanira Antonella Carbajal Llosa, Carlos Miguel Quispe Huincho, Miriam Rocío Vera Vilchez, Jesús Emilio Alejandro Méndez, Lidiana Rene Achallma Mendoza, Lino González Tovar, Izamar Estrella Salazar Coronel, Wilian Loayza, Hildo Cruz Luis, Juancarlos Alejandro Arbizu Berrocal, Carlos Irvin |
| author2_role |
author author author author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Pizarro Carcausto, Samuel Edwin Pricope, Narcisa G. Figueroa Venegas, Deyanira Antonella Carbajal Llosa, Carlos Miguel Quispe Huincho, Miriam Rocío Vera Vilchez, Jesús Emilio Alejandro Méndez, Lidiana Rene Achallma Mendoza, Lino González Tovar, Izamar Estrella Salazar Coronel, Wilian Loayza, Hildo Cruz Luis, Juancarlos Alejandro Arbizu Berrocal, Carlos Irvin |
| dc.subject.es_PE.fl_str_mv |
Soil mapping UAV Google Earth Engine Machine learning Cloud computing |
| topic |
Soil mapping UAV Google Earth Engine Machine learning Cloud computing https://purl.org/pe-repo/ocde/ford#4.01.06 Soil surveys Reconocimiento de suelos Unmanned aerial vehicles Vehículos aéreos no tripulados Machine learning |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.06 |
| dc.subject.agrovoc.es_PE.fl_str_mv |
Soil surveys Reconocimiento de suelos Unmanned aerial vehicles Vehículos aéreos no tripulados Machine learning |
| description |
The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-08-31T17:37:23Z |
| dc.date.available.none.fl_str_mv |
2023-08-31T17:37:23Z |
| dc.date.issued.fl_str_mv |
2023-06-20 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Pizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs15123203 |
| dc.identifier.issn.none.fl_str_mv |
2072-4292 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2290 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/rs15123203 |
| identifier_str_mv |
Pizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs15123203 2072-4292 |
| url |
https://hdl.handle.net/20.500.12955/2290 https://doi.org/10.3390/rs15123203 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:2072-4292 |
| dc.relation.ispartofseries.es_PE.fl_str_mv |
Remote sensing |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
MDPI |
| dc.publisher.country.es_PE.fl_str_mv |
CH |
| dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
| dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/4ef800b2-7dc6-4c45-82d6-ba6def867ef0/download https://repositorio.inia.gob.pe/bitstreams/88787d9e-aec4-41de-bad9-b2920e63524b/download https://repositorio.inia.gob.pe/bitstreams/c6b94896-9c47-45cd-bfa1-9ce80c66e342/download https://repositorio.inia.gob.pe/bitstreams/e66fc39a-fbb2-4fc9-9a39-e1124ea7508e/download |
| bitstream.checksum.fl_str_mv |
3293024676bf7b6d1e120f7a93521ca1 8a4605be74aa9ea9d79846c1fba20a33 30395214999f421f56243208b78648a0 67f9a7f8cf5ff711d87993a44c21b04a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1833331728004939776 |
| spelling |
Pizarro Carcausto, Samuel EdwinPricope, Narcisa G.Figueroa Venegas, Deyanira AntonellaCarbajal Llosa, Carlos MiguelQuispe Huincho, Miriam RocíoVera Vilchez, Jesús EmilioAlejandro Méndez, Lidiana ReneAchallma Mendoza, LinoGonzález Tovar, Izamar EstrellaSalazar Coronel, WilianLoayza, HildoCruz Luis, Juancarlos AlejandroArbizu Berrocal, Carlos Irvin2023-08-31T17:37:23Z2023-08-31T17:37:23Z2023-06-20Pizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs151232032072-4292https://hdl.handle.net/20.500.12955/2290https://doi.org/10.3390/rs15123203The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions.application/pdfengMDPICHurn:issn:2072-4292Remote sensinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIASoil mappingUAVGoogle Earth EngineMachine learningCloud computinghttps://purl.org/pe-repo/ocde/ford#4.01.06Soil surveysReconocimiento de suelosUnmanned aerial vehiclesVehículos aéreos no tripuladosMachine learningImplementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imageryinfo:eu-repo/semantics/articleORIGINALPizarro_et-al_2023_soil_mapping.pdfPizarro_et-al_2023_soil_mapping.pdfArticle (English)application/pdf11363008https://repositorio.inia.gob.pe/bitstreams/4ef800b2-7dc6-4c45-82d6-ba6def867ef0/download3293024676bf7b6d1e120f7a93521ca1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/88787d9e-aec4-41de-bad9-b2920e63524b/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPizarro_et-al_2023_soil_mapping.pdf.txtPizarro_et-al_2023_soil_mapping.pdf.txtExtracted texttext/plain74330https://repositorio.inia.gob.pe/bitstreams/c6b94896-9c47-45cd-bfa1-9ce80c66e342/download30395214999f421f56243208b78648a0MD53THUMBNAILPizarro_et-al_2023_soil_mapping.pdf.jpgPizarro_et-al_2023_soil_mapping.pdf.jpgGenerated Thumbnailimage/jpeg1610https://repositorio.inia.gob.pe/bitstreams/e66fc39a-fbb2-4fc9-9a39-e1124ea7508e/download67f9a7f8cf5ff711d87993a44c21b04aMD5420.500.12955/2290oai:repositorio.inia.gob.pe:20.500.12955/22902023-08-31 12:37:25.321https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).