Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random Forests models

Descripción del Articulo

Remote sensing with large-scale satellite images for precision studies in grasslands has spatial and spectral resolution limitations. Against this, using spectral signs and vegetation indices obtained with microsensors transported by unmanned aerial vehicles (UAV) constitutes a more accurate alterna...

Descripción completa

Detalles Bibliográficos
Autores: Estrada Zúñiga, Andrés C., Cárdenas Rodriguez, Jim, Bejar Saya, Juan Víctor, Ñaupari Vázquez, Javier Arturo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4496
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4496
Nivel de acceso:acceso abierto
Materia:Aerial biomass
machine learning
Unmanned Aerial Vehicle (UAV)
Tolar
Support Vector Machine
Random Forest
Biomasa aérea
aprendizaje automático
Vehículo Aéreo No Tripulado (VANT)
tolar
Máquina de Vectores Soporte (MVS)
Descripción
Sumario:Remote sensing with large-scale satellite images for precision studies in grasslands has spatial and spectral resolution limitations. Against this, using spectral signs and vegetation indices obtained with microsensors transported by unmanned aerial vehicles (UAV) constitutes a more accurate alternative for biomass estimation. In the fieldwork, images were acquired with microsensors, and fixed transects of 100 m were used where vegetation samples were collected. The photographs acquired with the UAV were processed in Pix 4D, Arc Gis, and algorithms elaborated in R programming language. The biomass estimation was carried out with Multiple Linear Regression, Vector Support Machine, and Random (Forest Random) models. The Random model showed a Kappa coefficient of 0.94 in the training set and 0.901 in the test set (R2 = 0.482). The Random Forest model predicted 3 g/pixel of MV for Puna grass in the rainy season and 2 g/pixel for the dry season; the predicted biomass for the Tola bush was 15 g/pixel of MV for both seasons of the year. The estimation of biomass/hectare for the tolar plant community with its tola shrub and Puna grass components was 6,535.88 kg/ha for the rainy season and 6,588.81 kg/ha for the dry season. The difference between the biomass estimated in the field and the biomass estimated with Random Forest was 5.48% for the rainy season and 9.63% for the dry season.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).