A Regression Based Approach for Leishmaniasis Outbreak Detection
Descripción del Articulo
Leishmaniasis is part of a group of diseases called Neglected Tropical Diseases (NTDs) that affects poor and forgotten communities and reports more than 5,000 cases in regions like Brazil, Peru, and Colombia being categorized as endemic in these. In this study, we present a machine-learning model (R...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676005 |
Enlace del recurso: | http://hdl.handle.net/10757/676005 |
Nivel de acceso: | acceso embargado |
Materia: | Leishmaniasis Machine Learning NTDs Outbreaks Random Forest |
Sumario: | Leishmaniasis is part of a group of diseases called Neglected Tropical Diseases (NTDs) that affects poor and forgotten communities and reports more than 5,000 cases in regions like Brazil, Peru, and Colombia being categorized as endemic in these. In this study, we present a machine-learning model (Random Forest) to predict cases in the future and predict possible outbreaks using meteorological and epidemiological data of the province of la Convencion (Cusco - Peru). Understanding how climate variables affect leishmaniasis outbreaks is an important problem to help people to perform prevention systems. We used several techniques to obtain better metrics and improve our model performance such as synthetic data and hyperparameter optimization. Results showed two important climate factors to analyze and no outbreaks. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).