A Regression Based Approach for Leishmaniasis Outbreak Detection
Descripción del Articulo
Leishmaniasis is part of a group of diseases called Neglected Tropical Diseases (NTDs) that affects poor and forgotten communities and reports more than 5,000 cases in regions like Brazil, Peru, and Colombia being categorized as endemic in these. In this study, we present a machine-learning model (R...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676005 |
Enlace del recurso: | http://hdl.handle.net/10757/676005 |
Nivel de acceso: | acceso embargado |
Materia: | Leishmaniasis Machine Learning NTDs Outbreaks Random Forest |
id |
UUPC_fa35367d4e7753304c10737f2d05d730 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676005 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
A Regression Based Approach for Leishmaniasis Outbreak Detection |
title |
A Regression Based Approach for Leishmaniasis Outbreak Detection |
spellingShingle |
A Regression Based Approach for Leishmaniasis Outbreak Detection Baptista, Ernie Leishmaniasis Machine Learning NTDs Outbreaks Random Forest |
title_short |
A Regression Based Approach for Leishmaniasis Outbreak Detection |
title_full |
A Regression Based Approach for Leishmaniasis Outbreak Detection |
title_fullStr |
A Regression Based Approach for Leishmaniasis Outbreak Detection |
title_full_unstemmed |
A Regression Based Approach for Leishmaniasis Outbreak Detection |
title_sort |
A Regression Based Approach for Leishmaniasis Outbreak Detection |
author |
Baptista, Ernie |
author_facet |
Baptista, Ernie Vigil, Franco Ugarte, Willy |
author_role |
author |
author2 |
Vigil, Franco Ugarte, Willy |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Baptista, Ernie Vigil, Franco Ugarte, Willy |
dc.subject.es_PE.fl_str_mv |
Leishmaniasis Machine Learning NTDs Outbreaks Random Forest |
topic |
Leishmaniasis Machine Learning NTDs Outbreaks Random Forest |
description |
Leishmaniasis is part of a group of diseases called Neglected Tropical Diseases (NTDs) that affects poor and forgotten communities and reports more than 5,000 cases in regions like Brazil, Peru, and Colombia being categorized as endemic in these. In this study, we present a machine-learning model (Random Forest) to predict cases in the future and predict possible outbreaks using meteorological and epidemiological data of the province of la Convencion (Cusco - Peru). Understanding how climate variables affect leishmaniasis outbreaks is an important problem to help people to perform prevention systems. We used several techniques to obtain better metrics and improve our model performance such as synthetic data and hyperparameter optimization. Results showed two important climate factors to analyze and no outbreaks. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-05T10:52:17Z |
dc.date.available.none.fl_str_mv |
2024-10-05T10:52:17Z |
dc.date.issued.fl_str_mv |
2024-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.5220/0012683900003699 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676005 |
dc.identifier.eissn.none.fl_str_mv |
21844984 |
dc.identifier.journal.es_PE.fl_str_mv |
International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85193932782 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85193932782 |
identifier_str_mv |
10.5220/0012683900003699 21844984 International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings 2-s2.0-85193932782 SCOPUS_ID:85193932782 |
url |
http://hdl.handle.net/10757/676005 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Science and Technology Publications, Lda |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings |
dc.source.beginpage.none.fl_str_mv |
204 |
dc.source.endpage.none.fl_str_mv |
211 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676005/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187181163053056 |
spelling |
5765d6cee858adf096dfe9fa2ff0ec6e300629882bfb24753eb5cc30d32ee275a63300533fd7e68213307170565ef90452257a500Baptista, ErnieVigil, FrancoUgarte, Willy2024-10-05T10:52:17Z2024-10-05T10:52:17Z2024-01-0110.5220/0012683900003699http://hdl.handle.net/10757/67600521844984International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings2-s2.0-85193932782SCOPUS_ID:85193932782Leishmaniasis is part of a group of diseases called Neglected Tropical Diseases (NTDs) that affects poor and forgotten communities and reports more than 5,000 cases in regions like Brazil, Peru, and Colombia being categorized as endemic in these. In this study, we present a machine-learning model (Random Forest) to predict cases in the future and predict possible outbreaks using meteorological and epidemiological data of the province of la Convencion (Cusco - Peru). Understanding how climate variables affect leishmaniasis outbreaks is an important problem to help people to perform prevention systems. We used several techniques to obtain better metrics and improve our model performance such as synthetic data and hyperparameter optimization. Results showed two important climate factors to analyze and no outbreaks.application/htmlengScience and Technology Publications, Ldainfo:eu-repo/semantics/embargoedAccessLeishmaniasisMachine LearningNTDsOutbreaksRandom ForestA Regression Based Approach for Leishmaniasis Outbreak Detectioninfo:eu-repo/semantics/articleInternational Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings204211reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676005/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676005oai:repositorioacademico.upc.edu.pe:10757/6760052024-10-05 10:52:19.728Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.919782 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).