Mutualism as a stabilizing effect on the population densities of two interacting species
Descripción del Articulo
Mathematical models are a very useful tool to understand, describe or predict the population dynamics of species interacting. Ecologists and mathematicians have extensively studied the predator-prey, victim-exploiter, competition and mutualistic relationships. However, mutualism between spe...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/7086 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7086 |
| Nivel de acceso: | acceso abierto |
| Materia: | Mutualismo interación condicionada modelo consumidor-recursos efecto Allee función de Dulac solución periódica Mutualism conditioned interaction consumer-resources model Allee effect Dulac function periodic solution |
| id |
REVUNITRU_8944a09682b178ad38e246ead7e1b383 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/7086 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Mutualism as a stabilizing effect on the population densities of two interacting species Mutualismo como un efecto estabilizador de las densidades poblacionales de dos especies interactuando |
| title |
Mutualism as a stabilizing effect on the population densities of two interacting species |
| spellingShingle |
Mutualism as a stabilizing effect on the population densities of two interacting species Osuna, Osvaldo Mutualismo interación condicionada modelo consumidor-recursos efecto Allee función de Dulac solución periódica Mutualism conditioned interaction consumer-resources model Allee effect Dulac function periodic solution |
| title_short |
Mutualism as a stabilizing effect on the population densities of two interacting species |
| title_full |
Mutualism as a stabilizing effect on the population densities of two interacting species |
| title_fullStr |
Mutualism as a stabilizing effect on the population densities of two interacting species |
| title_full_unstemmed |
Mutualism as a stabilizing effect on the population densities of two interacting species |
| title_sort |
Mutualism as a stabilizing effect on the population densities of two interacting species |
| dc.creator.none.fl_str_mv |
Osuna, Osvaldo Tapia-Santos, Brenda Villavicencio-Pulido, Geiser |
| author |
Osuna, Osvaldo |
| author_facet |
Osuna, Osvaldo Tapia-Santos, Brenda Villavicencio-Pulido, Geiser |
| author_role |
author |
| author2 |
Tapia-Santos, Brenda Villavicencio-Pulido, Geiser |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Mutualismo interación condicionada modelo consumidor-recursos efecto Allee función de Dulac solución periódica Mutualism conditioned interaction consumer-resources model Allee effect Dulac function periodic solution |
| topic |
Mutualismo interación condicionada modelo consumidor-recursos efecto Allee función de Dulac solución periódica Mutualism conditioned interaction consumer-resources model Allee effect Dulac function periodic solution |
| description |
Mathematical models are a very useful tool to understand, describe or predict the population dynamics of species interacting. Ecologists and mathematicians have extensively studied the predator-prey, victim-exploiter, competition and mutualistic relationships. However, mutualism between species has not received the same attention as the other ecological interactions. In this work, we exclude periodic solutions of three types of systems by the construction of Dulac functions. These systems can be used to describe the population dynamics of mutualistic species. The system type I includes a wide variety of mutualistic models in which both the intrinsic rate of increase and the carrying capacity of each species increase by the interaction between species. In particular, the system type I can be applied to exclude periodic solutions of models with conditioned interactions such that mutualism occurs at low population densities and competition occurs at high population densities. The system type II includes mutualistic models that describe a consumer-resources interaction. In these models, it is assumed that the net change of benefitscosts due to the interaction depends on the densities of the recipient species and the partner one. The system type III describes mutualistic models in which the per capita growth rate of each species is affected by a weak Allee effect. We also apply the results of this work to models mentioned in a historical list of mutualistic models provided in [1]. From the results obtained, we conclude that mutualism leads to the exclusion of periodic behaviors in the population dynamics of interacting species. Therefore, the population densities of the mutualistic species converge to an equilibrium point. Then, when the population densities oscillate, the oscillatory behaviors are transient. These results are relevant since the dynamics of mutualistic species has not been deeply characterized and the discussion about the existence of sustained oscillatory behavior in mutualistic species is relevant from an ecological perspective. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7086 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7086 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7086/7108 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 326 - 343 Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 326 - 343 Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 326 - 343 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1852864028087418880 |
| spelling |
Mutualism as a stabilizing effect on the population densities of two interacting speciesMutualismo como un efecto estabilizador de las densidades poblacionales de dos especies interactuandoOsuna, OsvaldoTapia-Santos, BrendaVillavicencio-Pulido, GeiserMutualismointeración condicionadamodelo consumidor-recursosefecto Alleefunción de Dulacsolución periódicaMutualismconditioned interactionconsumer-resources modelAllee effectDulac functionperiodic solutionMathematical models are a very useful tool to understand, describe or predict the population dynamics of species interacting. Ecologists and mathematicians have extensively studied the predator-prey, victim-exploiter, competition and mutualistic relationships. However, mutualism between species has not received the same attention as the other ecological interactions. In this work, we exclude periodic solutions of three types of systems by the construction of Dulac functions. These systems can be used to describe the population dynamics of mutualistic species. The system type I includes a wide variety of mutualistic models in which both the intrinsic rate of increase and the carrying capacity of each species increase by the interaction between species. In particular, the system type I can be applied to exclude periodic solutions of models with conditioned interactions such that mutualism occurs at low population densities and competition occurs at high population densities. The system type II includes mutualistic models that describe a consumer-resources interaction. In these models, it is assumed that the net change of benefitscosts due to the interaction depends on the densities of the recipient species and the partner one. The system type III describes mutualistic models in which the per capita growth rate of each species is affected by a weak Allee effect. We also apply the results of this work to models mentioned in a historical list of mutualistic models provided in [1]. From the results obtained, we conclude that mutualism leads to the exclusion of periodic behaviors in the population dynamics of interacting species. Therefore, the population densities of the mutualistic species converge to an equilibrium point. Then, when the population densities oscillate, the oscillatory behaviors are transient. These results are relevant since the dynamics of mutualistic species has not been deeply characterized and the discussion about the existence of sustained oscillatory behavior in mutualistic species is relevant from an ecological perspective. Los modelos matemáticos son una herramienta muy útil para comprender, describir o predecir la dinámica poblacional de especies que interactúan. Ecólogos y matemáticos han estudiado ampliamente las relaciones depredador-presa, víctima-explotador, competencia y mutualismo. Sin embargo, el mutualismo entre especies no ha recibido la misma atención que las otras interacciones ecológicas. En este trabajo, excluimos soluciones periódicas de tres tipos de sistemas mediante la construcción de funciones de Dulac. Estos sistemas pueden utilizarse para describir la dinámica poblacional de especies mutualistas. El sistema tipo I incluye una amplia variedad de modelos mutualistas en los que tanto la tasa de aumento intrínseca como la capacidad de carga de cada especie se incrementa por la interacción entre especies. En particular, el sistema tipo I puede aplicarse para excluir soluciones periódicas de modelos con interacciones condicionadas, de manera que el mutualismo ocurre a bajas densidades poblacionales y la competencia a altas densidades poblacionales. El sistema tipo II incluye modelos mutualistas que describen una interacción consumidor-recursos. En estos modelos, se supone que el cambio neto de beneficios-costos debido a la interacción dependen de las densidades de la especie receptora y de la especie socia. El sistema tipo III describe modelos mutualistas en los que las tasas de crecimiento per capita de cada especie se ve afectado por un efecto Allee debil. También aplicamos los resultados de este trabajo a los modelos mencionados en una lista histórica de modelos mutualistas proporcionados en [1]. A partir de los resultados obtenidos, concluimos que el mutualismo conduce a la exclusion de comportamientos periódicos en la dinámica poblacional de especies que interactúan. Por lo tanto, las densidades poblacionales de especies mutualistas convergen a un punto de equilibrio. En consecuencia, cuando las densidades poblacionales oscilan, los comportamientos oscilatorios son transitorios. Estos resultados son relevantes ya que la dinámica de las especies mutualistas no ha sido caracterizada profundamente y la discusión sobre la existencia de un comportamiento oscilatorio sostenido en especies mutualistas es relevante desde una perspectiva ecológica.National University of Trujillo - Academic Department of Mathematics2025-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7086Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 326 - 343Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 326 - 343Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 326 - 3432411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7086/7108https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/70862025-12-27T01:09:48Z |
| score |
13.991016 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).