On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
Descripción del Articulo
A predator-prey model of Gause type is an extension of the classical Lotka-Volterra predator-prey model. In this work, we study a predator-prey model of Gause type, where the prey growth rate is subject to an Allee effect and the action of the predator over the prey is given by a square-root functio...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/193855 |
Enlace del recurso: | https://revistas.pucp.edu.pe/index.php/promathematica/article/view/25728/24273 https://repositorio.pucp.edu.pe/index/handle/123456789/193855 |
Nivel de acceso: | acceso abierto |
Materia: | Predator-Prey models Gause models Allee effect Square root functional response Modelos depredador-presa Modelos de Gause Efecto Allee Funcional de respuesta de raíz cuadrada https://purl.org/pe-repo/ocde/ford#1.01.00 |
Sumario: | A predator-prey model of Gause type is an extension of the classical Lotka-Volterra predator-prey model. In this work, we study a predator-prey model of Gause type, where the prey growth rate is subject to an Allee effect and the action of the predator over the prey is given by a square-root functional response, which is non-differentiable at the y-axis. This kind of functional response appropriately models systems in which the prey have a strong herd structure, as the predators mostly interact with the prey on the boundary of the herd. Because of the square root term in the functional response, studying the behavior of the solutions near the origin is more subtle and interesting than other standard models.Our study is divided into two parts: the local classification of the equilibrium points, and the behavior of the solutions in certain invariant set when the model has a strong Allee effect. In one our main results we prove, for a wide choice of parameters, that the solutions in certain invariant set approach to the y-axis. Moreover, for a certain choice of parameters, we show the existence of a separatrix curve dividing the invariant set in two regions, where in one region any solution approaches the y-axis and in the other there is a globally asymptotically stable equilibrium point. We also give conditions on the parameters to ensure the existence of a center-type equilibrium, and show the existence of a Hopf bifurcation. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).