On a class of predator-prey models of Gause type with Allee effect and a square-root functional response

Descripción del Articulo

A predator-prey model of Gause type is an extension of the classical Lotka-Volterra predator-prey model. In this work, we study a predator-prey model of Gause type, where the prey growth rate is subject to an Allee effect and the action of the predator over the prey is given by a square-root functio...

Descripción completa

Detalles Bibliográficos
Autores: Puchuri, Liliana, Bueno, Orestes
Formato: artículo
Fecha de Publicación:2022
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/193855
Enlace del recurso:https://revistas.pucp.edu.pe/index.php/promathematica/article/view/25728/24273
https://repositorio.pucp.edu.pe/index/handle/123456789/193855
Nivel de acceso:acceso abierto
Materia:Predator-Prey models
Gause models
Allee effect
Square root functional response
Modelos depredador-presa
Modelos de Gause
Efecto Allee
Funcional de respuesta de raíz cuadrada
https://purl.org/pe-repo/ocde/ford#1.01.00
id RPUC_ac7b5b8cb8c7e8787f988ede27a78700
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/193855
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.en_US.fl_str_mv On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
title On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
spellingShingle On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
Puchuri, Liliana
Predator-Prey models
Gause models
Allee effect
Square root functional response
Modelos depredador-presa
Modelos de Gause
Efecto Allee
Funcional de respuesta de raíz cuadrada
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
title_full On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
title_fullStr On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
title_full_unstemmed On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
title_sort On a class of predator-prey models of Gause type with Allee effect and a square-root functional response
author Puchuri, Liliana
author_facet Puchuri, Liliana
Bueno, Orestes
author_role author
author2 Bueno, Orestes
author2_role author
dc.contributor.author.fl_str_mv Puchuri, Liliana
Bueno, Orestes
dc.subject.en_US.fl_str_mv Predator-Prey models
Gause models
Allee effect
Square root functional response
topic Predator-Prey models
Gause models
Allee effect
Square root functional response
Modelos depredador-presa
Modelos de Gause
Efecto Allee
Funcional de respuesta de raíz cuadrada
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.es_ES.fl_str_mv Modelos depredador-presa
Modelos de Gause
Efecto Allee
Funcional de respuesta de raíz cuadrada
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description A predator-prey model of Gause type is an extension of the classical Lotka-Volterra predator-prey model. In this work, we study a predator-prey model of Gause type, where the prey growth rate is subject to an Allee effect and the action of the predator over the prey is given by a square-root functional response, which is non-differentiable at the y-axis. This kind of functional response appropriately models systems in which the prey have a strong herd structure, as the predators mostly interact with the prey on the boundary of the herd. Because of the square root term in the functional response, studying the behavior of the solutions near the origin is more subtle and interesting than other standard models.Our study is divided into two parts: the local classification of the equilibrium points, and the behavior of the solutions in certain invariant set when the model has a strong Allee effect. In one our main results we prove, for a wide choice of parameters, that the solutions in certain invariant set approach to the y-axis. Moreover, for a certain choice of parameters, we show the existence of a separatrix curve dividing the invariant set in two regions, where in one region any solution approaches the y-axis and in the other there is a globally asymptotically stable equilibrium point. We also give conditions on the parameters to ensure the existence of a center-type equilibrium, and show the existence of a Hopf bifurcation.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-26T16:15:08Z
2023-06-01T15:09:46Z
dc.date.available.none.fl_str_mv 2022-10-26T16:15:08Z
2023-06-01T15:09:46Z
dc.date.issued.fl_str_mv 2022-08-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv https://revistas.pucp.edu.pe/index.php/promathematica/article/view/25728/24273
https://repositorio.pucp.edu.pe/index/handle/123456789/193855
url https://revistas.pucp.edu.pe/index.php/promathematica/article/view/25728/24273
https://repositorio.pucp.edu.pe/index/handle/123456789/193855
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2305-2430
urn:issn:1012-3938
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.es_ES.fl_str_mv Pro Mathematica; Vol. 32 Núm. 63 (2022)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639367383646208
spelling Puchuri, LilianaBueno, Orestes2022-10-26T16:15:08Z2023-06-01T15:09:46Z2022-10-26T16:15:08Z2023-06-01T15:09:46Z2022-08-31https://revistas.pucp.edu.pe/index.php/promathematica/article/view/25728/24273https://repositorio.pucp.edu.pe/index/handle/123456789/193855A predator-prey model of Gause type is an extension of the classical Lotka-Volterra predator-prey model. In this work, we study a predator-prey model of Gause type, where the prey growth rate is subject to an Allee effect and the action of the predator over the prey is given by a square-root functional response, which is non-differentiable at the y-axis. This kind of functional response appropriately models systems in which the prey have a strong herd structure, as the predators mostly interact with the prey on the boundary of the herd. Because of the square root term in the functional response, studying the behavior of the solutions near the origin is more subtle and interesting than other standard models.Our study is divided into two parts: the local classification of the equilibrium points, and the behavior of the solutions in certain invariant set when the model has a strong Allee effect. In one our main results we prove, for a wide choice of parameters, that the solutions in certain invariant set approach to the y-axis. Moreover, for a certain choice of parameters, we show the existence of a separatrix curve dividing the invariant set in two regions, where in one region any solution approaches the y-axis and in the other there is a globally asymptotically stable equilibrium point. We also give conditions on the parameters to ensure the existence of a center-type equilibrium, and show the existence of a Hopf bifurcation.Un modelo depredador-presa de tipo Gause es una extensión del clásico modelo depredador-presa de Lotka-Volterra. En este trabajo estudiamos un modelo depredador-presa de tipo Gause, donde el crecimiento de las presas es sujeto a un efecto Allee y la acción del depredador sobre la presa es dada por una funcional de respuesta de raíz cuadrada, la cual no es diferenciable en el eje y. Este tipo de respuesta funcional modela apropiadamente sistemas en los cuales la presa posee un fuerte comportamiento de rebaño, pues los depredadores interactúan con las presas mayormente en la frontera del rebaño. Debido al término de raíz cuadrada en la respuesta funcional, el estudio del comportamiento de las soluciones cerca al origen es más sutil e interesante que en otros modelos.Nuestro estudio es dividido en dos partes: la clasificación local de los puntos de equilibrio, y el comportamiento de las soluciones en cierto conjunto invariante cuando el modelo tiene un efecto Allee fuerte. En uno de nuestros resultados principales probamos, para una amplia selección de parámetros, que las soluciones en cierto conjunto invariante se aproximan al eje y. Además, para cierta elección de parámetros, probamos la existencia de una curva separatriz que divide el conjunto invariante en dos regiones: una donde toda solución se aproxima al eje y, y otra donde hay un punto de equilibrio global y asintóticamente estable. También damos condiciones para asegurar la existencia de un equilibrio de tipo centro, y mostramos la existencia de una bifurcación de Hopf.application/pdfengPontificia Universidad Católica del PerúPEurn:issn:2305-2430urn:issn:1012-3938info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Pro Mathematica; Vol. 32 Núm. 63 (2022)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPPredator-Prey modelsGause modelsAllee effectSquare root functional responseModelos depredador-presaModelos de GauseEfecto AlleeFuncional de respuesta de raíz cuadradahttps://purl.org/pe-repo/ocde/ford#1.01.00On a class of predator-prey models of Gause type with Allee effect and a square-root functional responseinfo:eu-repo/semantics/articleArtículo20.500.14657/193855oai:repositorio.pucp.edu.pe:20.500.14657/1938552024-06-05 14:39:54.009http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
score 13.896995
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).