Teorema Normalización Poincare Dulac en Cⁿ

Descripción del Articulo

El presente trabajo estudia Sistemas de Ecuaciones Diferenciales Ordinarias Complejas y se demostrará los siguientes teoremas, Teorema de Linealización de Poincaré en Cⁿ que dice que un campo con autovalores no resonantes es localmente equivalente con su parte lineal y el Teorema de Dulac en Cⁿ que...

Descripción completa

Detalles Bibliográficos
Autor: Jurado Cerrón, Liliana Olga
Formato: tesis de grado
Fecha de Publicación:2012
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/4376
Enlace del recurso:https://hdl.handle.net/20.500.12672/4376
Nivel de acceso:acceso abierto
Materia:Campos Vectoriales Holoformos
Linealización
Poincaré-Dulac
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:El presente trabajo estudia Sistemas de Ecuaciones Diferenciales Ordinarias Complejas y se demostrará los siguientes teoremas, Teorema de Linealización de Poincaré en Cⁿ que dice que un campo con autovalores no resonantes es localmente equivalente con su parte lineal y el Teorema de Dulac en Cⁿ que dice que un campo con autovalores resonantes es localmente equivalente a un campo polinomial
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).