Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller

Descripción del Articulo

It was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molass...

Descripción completa

Detalles Bibliográficos
Autores: Vásquez, Víctor, Lescano, Carlos
Formato: artículo
Fecha de Publicación:2010
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/17
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17
Nivel de acceso:acceso abierto
Materia:Artificial Neural Networks (ANN)
molasses vinegar
flash evaporator
flash distiller
Redes Neuronales Artificiales (RNA)
vinagre de melaza
evaporador flash
destilador flash
id REVUNITRU_66465ce5d56f01c5e236b5b953204aab
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/17
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distillerPredicción por redes neuronales artificiales de la calidad fisicoquímica de vinagre de melaza de caña por efecto de tiempo- temperatura de alimentación a evaporador-destilador flashVásquez, VíctorLescano, CarlosArtificial Neural Networks (ANN)molasses vinegarflash evaporatorflash distillerRedes Neuronales Artificiales (RNA)vinagre de melazaevaporador flashdestilador flashIt was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molasses were fed to a flash evaporator at four temperatures (61, 66, 71 and 76 ° C) and in three times (25, 35 and 45 min). The prediction was made with two networks: ANN and ANN-A-B, both with good performance. The ANN-A was of the feedforward (FF) type with Backpropagation (BP) training algorithms and set of Levenberg-Marquardt (LM) weights adjustment, topology: 6 inputs (operations data of flash evaporation-distillation), 7 linear outputs (physicochemical characteristics), 9 tangent sigmoidal neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 20 training stages. The ANN-A showed better performance than a statistical model of first order. The ANN-B also FF, BP and LM algorithms, topology: 2 inputs (data from flash evaporation), 7 linear outputs (physical and chemical characteristics), 84 logarithm sigmoid neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 300 training stages. The ANN-B showed the same predictive capacity as a statistical model of the first-order with interaction of terms.Se predijo por Redes Neuronales Artificiales (RNA) importantes características fisicoquímicas de vinagre de melaza: pH, densidad, acidez total, etanol, aldehídos totales y furfural; obtenidas mediante operaciones de evaporación flash y clarificación por destilación flash. Melaza fermentada por vía alcohólica y acética, fue alimentada a un evaporador flash a cuatro temperaturas (61, 66, 71 y 76 °C) y tres tiempos (25, 35 y 45 min). La predicción se realizó con dos redes: RNA-A y RNA-B, ambas con buen desempeño. La RNA-A fue del tipo feedforward (FF), con algoritmos de entrenamiento Backpropagation (BP) y ajuste de pesos Levenberg-Marquardt (LM), topología: 6 entradas (datos de las operaciones de evaporación-destilación flash), 7 salidas lineales (características fisicoquímicas), 9 neuronas tangente sigmoidales en 1 capa oculta, coeficiente de momento 0.5, tasa de aprendizaje 0.01, meta del error 0.0001 y 20 etapas de entrenamiento. La RNA-A mostró mejor desempeño que un modelo estadístico de primer orden. La RNA-B igualmente FF, con algoritmos BP y LM, topología: 2 entradas (datos de la evaporación flash), 7 salidas lineales (características fisicoquímicas), 84 neuronas logaritmo sigmoidales en 1 capa oculta, coeficiente de momento 0.5, tasa de aprendizaje 0.01, meta del error 0.0001 y 300 etapas de entrenamiento. La RNA-B mostró igual capacidad predictiva que un modelo estadístico de primer orden con interacción de términos.Universidad Nacional de Trujillo2010-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17Scientia Agropecuaria; Vol. 1 Núm. 1 (2010): Enero - Marzo; 63-73Scientia Agropecuaria; Vol. 1 No. 1 (2010): January - March; 63-732306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17/32Derechos de autor 2010 Scientia Agropecuariainfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/172017-04-18T09:04:51Z
dc.title.none.fl_str_mv Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
Predicción por redes neuronales artificiales de la calidad fisicoquímica de vinagre de melaza de caña por efecto de tiempo- temperatura de alimentación a evaporador-destilador flash
title Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
spellingShingle Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
Vásquez, Víctor
Artificial Neural Networks (ANN)
molasses vinegar
flash evaporator
flash distiller
Redes Neuronales Artificiales (RNA)
vinagre de melaza
evaporador flash
destilador flash
title_short Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
title_full Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
title_fullStr Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
title_full_unstemmed Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
title_sort Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
dc.creator.none.fl_str_mv Vásquez, Víctor
Lescano, Carlos
author Vásquez, Víctor
author_facet Vásquez, Víctor
Lescano, Carlos
author_role author
author2 Lescano, Carlos
author2_role author
dc.subject.none.fl_str_mv Artificial Neural Networks (ANN)
molasses vinegar
flash evaporator
flash distiller
Redes Neuronales Artificiales (RNA)
vinagre de melaza
evaporador flash
destilador flash
topic Artificial Neural Networks (ANN)
molasses vinegar
flash evaporator
flash distiller
Redes Neuronales Artificiales (RNA)
vinagre de melaza
evaporador flash
destilador flash
description It was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molasses were fed to a flash evaporator at four temperatures (61, 66, 71 and 76 ° C) and in three times (25, 35 and 45 min). The prediction was made with two networks: ANN and ANN-A-B, both with good performance. The ANN-A was of the feedforward (FF) type with Backpropagation (BP) training algorithms and set of Levenberg-Marquardt (LM) weights adjustment, topology: 6 inputs (operations data of flash evaporation-distillation), 7 linear outputs (physicochemical characteristics), 9 tangent sigmoidal neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 20 training stages. The ANN-A showed better performance than a statistical model of first order. The ANN-B also FF, BP and LM algorithms, topology: 2 inputs (data from flash evaporation), 7 linear outputs (physical and chemical characteristics), 84 logarithm sigmoid neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 300 training stages. The ANN-B showed the same predictive capacity as a statistical model of the first-order with interaction of terms.
publishDate 2010
dc.date.none.fl_str_mv 2010-03-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17/32
dc.rights.none.fl_str_mv Derechos de autor 2010 Scientia Agropecuaria
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2010 Scientia Agropecuaria
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 1 Núm. 1 (2010): Enero - Marzo; 63-73
Scientia Agropecuaria; Vol. 1 No. 1 (2010): January - March; 63-73
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845253352622915584
score 13.243185
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).