Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
Descripción del Articulo
It was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molass...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2010 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/17 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial Neural Networks (ANN) molasses vinegar flash evaporator flash distiller Redes Neuronales Artificiales (RNA) vinagre de melaza evaporador flash destilador flash |
id |
REVUNITRU_66465ce5d56f01c5e236b5b953204aab |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/17 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distillerPredicción por redes neuronales artificiales de la calidad fisicoquímica de vinagre de melaza de caña por efecto de tiempo- temperatura de alimentación a evaporador-destilador flashVásquez, VíctorLescano, CarlosArtificial Neural Networks (ANN)molasses vinegarflash evaporatorflash distillerRedes Neuronales Artificiales (RNA)vinagre de melazaevaporador flashdestilador flashIt was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molasses were fed to a flash evaporator at four temperatures (61, 66, 71 and 76 ° C) and in three times (25, 35 and 45 min). The prediction was made with two networks: ANN and ANN-A-B, both with good performance. The ANN-A was of the feedforward (FF) type with Backpropagation (BP) training algorithms and set of Levenberg-Marquardt (LM) weights adjustment, topology: 6 inputs (operations data of flash evaporation-distillation), 7 linear outputs (physicochemical characteristics), 9 tangent sigmoidal neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 20 training stages. The ANN-A showed better performance than a statistical model of first order. The ANN-B also FF, BP and LM algorithms, topology: 2 inputs (data from flash evaporation), 7 linear outputs (physical and chemical characteristics), 84 logarithm sigmoid neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 300 training stages. The ANN-B showed the same predictive capacity as a statistical model of the first-order with interaction of terms.Se predijo por Redes Neuronales Artificiales (RNA) importantes características fisicoquímicas de vinagre de melaza: pH, densidad, acidez total, etanol, aldehídos totales y furfural; obtenidas mediante operaciones de evaporación flash y clarificación por destilación flash. Melaza fermentada por vía alcohólica y acética, fue alimentada a un evaporador flash a cuatro temperaturas (61, 66, 71 y 76 °C) y tres tiempos (25, 35 y 45 min). La predicción se realizó con dos redes: RNA-A y RNA-B, ambas con buen desempeño. La RNA-A fue del tipo feedforward (FF), con algoritmos de entrenamiento Backpropagation (BP) y ajuste de pesos Levenberg-Marquardt (LM), topología: 6 entradas (datos de las operaciones de evaporación-destilación flash), 7 salidas lineales (características fisicoquímicas), 9 neuronas tangente sigmoidales en 1 capa oculta, coeficiente de momento 0.5, tasa de aprendizaje 0.01, meta del error 0.0001 y 20 etapas de entrenamiento. La RNA-A mostró mejor desempeño que un modelo estadístico de primer orden. La RNA-B igualmente FF, con algoritmos BP y LM, topología: 2 entradas (datos de la evaporación flash), 7 salidas lineales (características fisicoquímicas), 84 neuronas logaritmo sigmoidales en 1 capa oculta, coeficiente de momento 0.5, tasa de aprendizaje 0.01, meta del error 0.0001 y 300 etapas de entrenamiento. La RNA-B mostró igual capacidad predictiva que un modelo estadístico de primer orden con interacción de términos.Universidad Nacional de Trujillo2010-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17Scientia Agropecuaria; Vol. 1 Núm. 1 (2010): Enero - Marzo; 63-73Scientia Agropecuaria; Vol. 1 No. 1 (2010): January - March; 63-732306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17/32Derechos de autor 2010 Scientia Agropecuariainfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/172017-04-18T09:04:51Z |
dc.title.none.fl_str_mv |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller Predicción por redes neuronales artificiales de la calidad fisicoquímica de vinagre de melaza de caña por efecto de tiempo- temperatura de alimentación a evaporador-destilador flash |
title |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller |
spellingShingle |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller Vásquez, Víctor Artificial Neural Networks (ANN) molasses vinegar flash evaporator flash distiller Redes Neuronales Artificiales (RNA) vinagre de melaza evaporador flash destilador flash |
title_short |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller |
title_full |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller |
title_fullStr |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller |
title_full_unstemmed |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller |
title_sort |
Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller |
dc.creator.none.fl_str_mv |
Vásquez, Víctor Lescano, Carlos |
author |
Vásquez, Víctor |
author_facet |
Vásquez, Víctor Lescano, Carlos |
author_role |
author |
author2 |
Lescano, Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Artificial Neural Networks (ANN) molasses vinegar flash evaporator flash distiller Redes Neuronales Artificiales (RNA) vinagre de melaza evaporador flash destilador flash |
topic |
Artificial Neural Networks (ANN) molasses vinegar flash evaporator flash distiller Redes Neuronales Artificiales (RNA) vinagre de melaza evaporador flash destilador flash |
description |
It was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molasses were fed to a flash evaporator at four temperatures (61, 66, 71 and 76 ° C) and in three times (25, 35 and 45 min). The prediction was made with two networks: ANN and ANN-A-B, both with good performance. The ANN-A was of the feedforward (FF) type with Backpropagation (BP) training algorithms and set of Levenberg-Marquardt (LM) weights adjustment, topology: 6 inputs (operations data of flash evaporation-distillation), 7 linear outputs (physicochemical characteristics), 9 tangent sigmoidal neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 20 training stages. The ANN-A showed better performance than a statistical model of first order. The ANN-B also FF, BP and LM algorithms, topology: 2 inputs (data from flash evaporation), 7 linear outputs (physical and chemical characteristics), 84 logarithm sigmoid neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 300 training stages. The ANN-B showed the same predictive capacity as a statistical model of the first-order with interaction of terms. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17 |
url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17/32 |
dc.rights.none.fl_str_mv |
Derechos de autor 2010 Scientia Agropecuaria info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2010 Scientia Agropecuaria |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 1 Núm. 1 (2010): Enero - Marzo; 63-73 Scientia Agropecuaria; Vol. 1 No. 1 (2010): January - March; 63-73 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845253352622915584 |
score |
13.243185 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).