Prediction by artificial neural networks of the physicochemical quality of cane molasses vinegar by time-temperature effect of food to flash evaporator-distiller
Descripción del Articulo
It was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molass...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2010 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/17 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/17 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial Neural Networks (ANN) molasses vinegar flash evaporator flash distiller Redes Neuronales Artificiales (RNA) vinagre de melaza evaporador flash destilador flash |
Sumario: | It was predicted via Artificial Neural Networks (ANN) important physicochemical characteristics of molasses vinegar: pH, density, total acidity, ethanol, total aldehydes and furfural, obtained by flash evaporation operations and flash distillation clarification. Alcoholic and acetic fermented molasses were fed to a flash evaporator at four temperatures (61, 66, 71 and 76 ° C) and in three times (25, 35 and 45 min). The prediction was made with two networks: ANN and ANN-A-B, both with good performance. The ANN-A was of the feedforward (FF) type with Backpropagation (BP) training algorithms and set of Levenberg-Marquardt (LM) weights adjustment, topology: 6 inputs (operations data of flash evaporation-distillation), 7 linear outputs (physicochemical characteristics), 9 tangent sigmoidal neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 20 training stages. The ANN-A showed better performance than a statistical model of first order. The ANN-B also FF, BP and LM algorithms, topology: 2 inputs (data from flash evaporation), 7 linear outputs (physical and chemical characteristics), 84 logarithm sigmoid neurons in 1 hidden layer, 0.5 moment coefficient, 0.01 learning rate, 0.0001 error goal and 300 training stages. The ANN-B showed the same predictive capacity as a statistical model of the first-order with interaction of terms. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).