Exportación Completada — 

Machine learning application for campaigns marketing in commercial banking

Descripción del Articulo

Banks use telemarketing to contact potential customers for their products directly. This sales channel is complex, requiring large databases of possible prospects, and is subject to time and personnel restrictions. This article has three objectives: to compare five prediction models based on machine...

Descripción completa

Detalles Bibliográficos
Autores: Rosales Reyes, Ganímedes T., Gutierrez Coral, Xavier Alberto, Hayashida Marchinares, Augusto Enrique
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/5953
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5953
Nivel de acceso:acceso abierto
Materia:banking
marketing
fixed-term deposits
machine learning
classification algorithms
banca
depósitos a plazo fijo
aprendizaje automático
algoritmos de clasificación
Descripción
Sumario:Banks use telemarketing to contact potential customers for their products directly. This sales channel is complex, requiring large databases of possible prospects, and is subject to time and personnel restrictions. This article has three objectives: to compare five prediction models based on machine learning algorithms to find the one that offers the best predictive accuracy, deploy a pilot of this model, and recommend a roadmap for the future architecture that supports it. The comparison results show that the selected algorithm considerably improves the identification of customers who accept the product, which went from 11 % to 94 %, so its implementation can contribute to the competitiveness of these organizations.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).