Machine learning application for campaigns marketing in commercial banking
Descripción del Articulo
Banks use telemarketing to contact potential customers for their products directly. This sales channel is complex, requiring large databases of possible prospects, and is subject to time and personnel restrictions. This article has three objectives: to compare five prediction models based on machine...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad de Lima |
Repositorio: | Revistas - Universidad de Lima |
Lenguaje: | español |
OAI Identifier: | oai:revistas.ulima.edu.pe:article/5953 |
Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5953 |
Nivel de acceso: | acceso abierto |
Materia: | banking marketing fixed-term deposits machine learning classification algorithms banca depósitos a plazo fijo aprendizaje automático algoritmos de clasificación |
Sumario: | Banks use telemarketing to contact potential customers for their products directly. This sales channel is complex, requiring large databases of possible prospects, and is subject to time and personnel restrictions. This article has three objectives: to compare five prediction models based on machine learning algorithms to find the one that offers the best predictive accuracy, deploy a pilot of this model, and recommend a roadmap for the future architecture that supports it. The comparison results show that the selected algorithm considerably improves the identification of customers who accept the product, which went from 11 % to 94 %, so its implementation can contribute to the competitiveness of these organizations. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).