AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U

Descripción del Articulo

The development of agentic architectures for artificial intelligence (AI) has ledto new models of interaction and automation, most notably AI agent-based workflows andagent-to-agent (A2A) communication. This paper presents a comparative study of botharchitectures, analyzing their design principles,...

Descripción completa

Detalles Bibliográficos
Autores: Bustillos Ortega, Olda, Murillo Gamboa, Jorge, Mena Bocker, Daniel, De la O Fonseca, Carlos, Aguilar Mora, Carlos
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/8430
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/8430
Nivel de acceso:acceso abierto
Materia:agents
artificial intelligence
education
technology
workflows
agentes
educación
flujos de trabajo
inteligencia artificial
tecnología
id REVULIMA_26be3a32605012d307583b2f5a775dcd
oai_identifier_str oai:ojs.pkp.sfu.ca:article/8430
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
dc.title.none.fl_str_mv AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U
Arquitecturas agénticas de IA: un estudio comparativo de workflows (flujos de trabajo) versus A2A (agent to agent)  su aplicación en los sectores de educación, industria y servicios
title AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U
spellingShingle AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U
Bustillos Ortega, Olda
agents
artificial intelligence
education
technology
workflows
agentes
educación
flujos de trabajo
inteligencia artificial
tecnología
title_short AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U
title_full AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U
title_fullStr AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U
title_full_unstemmed AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U
title_sort AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U
dc.creator.none.fl_str_mv Bustillos Ortega, Olda
Murillo Gamboa, Jorge
Mena Bocker, Daniel
De la O Fonseca, Carlos
Aguilar Mora, Carlos
Bustillos Ortega, Olda
Murillo Gamboa, Jorge
Mena Bocker, Daniel
De la O Fonseca, Carlos
Aguilar Mora, Carlos
Bustillos Ortega, Olda
Murillo Gamboa, Jorge
Mena Bocker, Daniel
De la O Fonseca, Carlos
Aguilar Mora, Carlos
author Bustillos Ortega, Olda
author_facet Bustillos Ortega, Olda
Murillo Gamboa, Jorge
Mena Bocker, Daniel
De la O Fonseca, Carlos
Aguilar Mora, Carlos
author_role author
author2 Murillo Gamboa, Jorge
Mena Bocker, Daniel
De la O Fonseca, Carlos
Aguilar Mora, Carlos
author2_role author
author
author
author
dc.subject.none.fl_str_mv agents
artificial intelligence
education
technology
workflows
agentes
educación
flujos de trabajo
inteligencia artificial
tecnología
topic agents
artificial intelligence
education
technology
workflows
agentes
educación
flujos de trabajo
inteligencia artificial
tecnología
description The development of agentic architectures for artificial intelligence (AI) has ledto new models of interaction and automation, most notably AI agent-based workflows andagent-to-agent (A2A) communication. This paper presents a comparative study of botharchitectures, analyzing their design principles, human-AI coordination capabilities, scalabilityand adaptability in different environments, as well as obstacles and challenges. The analysisshows that while agentic workflows provide efficiency and control in stable environmentswith well-defined processes, A2A architectures excel in distributed and heterogeneouscontexts, offering greater flexibility and autonomy. Based on the premise that technologyshould strengthen, not replace, human capabilities, this study aims to generate a significantimpact in the areas where it is most needed. Representative examples from the education,healthcare, and industrial sectors are examined, demonstrating how these architecturestransform key processes. Comparative figures and tables are presented, integrating variousapproaches between the two agentic AI architectures. Finally, the technical and ethicalchallenges associated with their implementation are discussed, and future lines of researchare proposed for a responsible and effective adoption of these technologies.
publishDate 2025
dc.date.none.fl_str_mv 2025-12-19
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/8430
10.26439/interfases2025.n022.8430
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/8430
identifier_str_mv 10.26439/interfases2025.n022.8430
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/8430/8123
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/8430/8124
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 022 (2025); 71-100
Interfases; Núm. 022 (2025); 71-100
Interfases; n. 022 (2025); 71-100
1993-4912
10.26439/interfases2025.n022
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1853133588943339520
spelling AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: UArquitecturas agénticas de IA: un estudio comparativo de workflows (flujos de trabajo) versus A2A (agent to agent)  su aplicación en los sectores de educación, industria y serviciosBustillos Ortega, OldaMurillo Gamboa, JorgeMena Bocker, DanielDe la O Fonseca, CarlosAguilar Mora, CarlosBustillos Ortega, OldaMurillo Gamboa, JorgeMena Bocker, DanielDe la O Fonseca, CarlosAguilar Mora, CarlosBustillos Ortega, OldaMurillo Gamboa, JorgeMena Bocker, DanielDe la O Fonseca, CarlosAguilar Mora, Carlosagentsartificial intelligenceeducationtechnologyworkflowsagenteseducaciónflujos de trabajointeligencia artificialtecnologíaThe development of agentic architectures for artificial intelligence (AI) has ledto new models of interaction and automation, most notably AI agent-based workflows andagent-to-agent (A2A) communication. This paper presents a comparative study of botharchitectures, analyzing their design principles, human-AI coordination capabilities, scalabilityand adaptability in different environments, as well as obstacles and challenges. The analysisshows that while agentic workflows provide efficiency and control in stable environmentswith well-defined processes, A2A architectures excel in distributed and heterogeneouscontexts, offering greater flexibility and autonomy. Based on the premise that technologyshould strengthen, not replace, human capabilities, this study aims to generate a significantimpact in the areas where it is most needed. Representative examples from the education,healthcare, and industrial sectors are examined, demonstrating how these architecturestransform key processes. Comparative figures and tables are presented, integrating variousapproaches between the two agentic AI architectures. Finally, the technical and ethicalchallenges associated with their implementation are discussed, and future lines of researchare proposed for a responsible and effective adoption of these technologies.El desarrollo de arquitecturas agénticas de inteligencia artificial (IA) ha dadolugar a nuevos modelos de interacción y automatización, entre los que destacan los flujos de trabajo basados en agentes de IA (agentic workflows) y la comunicación entre agentesA2A (agent-to-agent). Se presenta un estudio comparativo entre ambas arquitecturas,analizando sus principios de diseño, capacidades de coordinación humano-IA, escalabilidady adaptabilidad en distintos entornos, así como sus obstáculos y desafíos. El análisisevidencia que, si bien los workflows agénticos proporcionan eficiencia y control en entornosestables con procesos delimitados, las arquitecturas A2A sobresalen en contextos distribuidosy heterogéneos, al ofrecer mayor flexibilidad y autonomía. Todo ello bajo la premisa deque la tecnología debe fortalecer, y no sustituir, las capacidades humanas, generando unimpacto significativo en los ámbitos en los que más se requiere. Se examinan ejemplosrepresentativos en los sectores de educación, salud e industria y se analiza cómo estasarquitecturas transforman procesos clave. Se presentan figuras y tablas comparativasque integran diversos enfoques entre ambas arquitecturas agénticas de IA. Finalmente, sediscuten los desafíos técnicos y éticos asociados con su implementación y se planteanlíneas futuras de investigación para una adopción responsable y eficaz de estas tecnologías.Universidad de Lima2025-12-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/843010.26439/interfases2025.n022.8430Interfases; No. 022 (2025); 71-100Interfases; Núm. 022 (2025); 71-100Interfases; n. 022 (2025); 71-1001993-491210.26439/interfases2025.n022reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/8430/8123https://revistas.ulima.edu.pe/index.php/Interfases/article/view/8430/8124https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/84302025-12-19T21:13:28Z
score 13.44655
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).