AI Agent Architectures: a Comparative Study of Workflows versus A2A (Agent to Agent) and their Application in the Education, Industry and Services Sectorsagénticas de IA: U

Descripción del Articulo

The development of agentic architectures for artificial intelligence (AI) has ledto new models of interaction and automation, most notably AI agent-based workflows andagent-to-agent (A2A) communication. This paper presents a comparative study of botharchitectures, analyzing their design principles,...

Descripción completa

Detalles Bibliográficos
Autores: Bustillos Ortega, Olda, Murillo Gamboa, Jorge, Mena Bocker, Daniel, De la O Fonseca, Carlos, Aguilar Mora, Carlos
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/8430
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/8430
Nivel de acceso:acceso abierto
Materia:agents
artificial intelligence
education
technology
workflows
agentes
educación
flujos de trabajo
inteligencia artificial
tecnología
Descripción
Sumario:The development of agentic architectures for artificial intelligence (AI) has ledto new models of interaction and automation, most notably AI agent-based workflows andagent-to-agent (A2A) communication. This paper presents a comparative study of botharchitectures, analyzing their design principles, human-AI coordination capabilities, scalabilityand adaptability in different environments, as well as obstacles and challenges. The analysisshows that while agentic workflows provide efficiency and control in stable environmentswith well-defined processes, A2A architectures excel in distributed and heterogeneouscontexts, offering greater flexibility and autonomy. Based on the premise that technologyshould strengthen, not replace, human capabilities, this study aims to generate a significantimpact in the areas where it is most needed. Representative examples from the education,healthcare, and industrial sectors are examined, demonstrating how these architecturestransform key processes. Comparative figures and tables are presented, integrating variousapproaches between the two agentic AI architectures. Finally, the technical and ethicalchallenges associated with their implementation are discussed, and future lines of researchare proposed for a responsible and effective adoption of these technologies.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).