Implementing artificial intelligence to measure meat quality parameters in local market traceability processes

Descripción del Articulo

The application of computer technologies associated with sensors and artificial intelligence (AI) in the quantification and qualification of quality parameters of meat products of various domestic species is an area of research, development, and innovation of great relevance in the agri-food industr...

Descripción completa

Detalles Bibliográficos
Autores: Alvarez García, Wuesley Yusmein, Mendoza, Laura, Muñoz Vílchez, Yudith Yohany, Casanova Núñez-Melgar, David, Quilcate Pairazaman, Carlos
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2589
Enlace del recurso:https://hdl.handle.net/20.500.12955/2589
https://doi.org/10.1111/ijfs.17546
Nivel de acceso:acceso abierto
Materia:Artificial Intelligence
Computer vision
Hyperspectral imaging
Meat quality
Ohmic
Ultrasound
https://purl.org/pe-repo/ocde/ford#4.02.01
Inteligencia artificial
Multispectral imagery
Imagen multiespectral
Calidad de la carne
Ultrasonido
id INIA_a426638085ced79aabaf3374b32970b8
oai_identifier_str oai:null:20.500.12955/2589
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
title Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
spellingShingle Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
Alvarez García, Wuesley Yusmein
Artificial Intelligence
Computer vision
Hyperspectral imaging
Meat quality
Ohmic
Ultrasound
https://purl.org/pe-repo/ocde/ford#4.02.01
Artificial Intelligence
Inteligencia artificial
Multispectral imagery
Imagen multiespectral
Meat quality
Calidad de la carne
Ultrasound
Ultrasonido
title_short Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
title_full Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
title_fullStr Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
title_full_unstemmed Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
title_sort Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
author Alvarez García, Wuesley Yusmein
author_facet Alvarez García, Wuesley Yusmein
Mendoza, Laura
Muñoz Vílchez, Yudith Yohany
Casanova Núñez-Melgar, David
Quilcate Pairazaman, Carlos
author_role author
author2 Mendoza, Laura
Muñoz Vílchez, Yudith Yohany
Casanova Núñez-Melgar, David
Quilcate Pairazaman, Carlos
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Alvarez García, Wuesley Yusmein
Mendoza, Laura
Muñoz Vílchez, Yudith Yohany
Casanova Núñez-Melgar, David
Quilcate Pairazaman, Carlos
dc.subject.es_PE.fl_str_mv Artificial Intelligence
Computer vision
Hyperspectral imaging
Meat quality
Ohmic
Ultrasound
topic Artificial Intelligence
Computer vision
Hyperspectral imaging
Meat quality
Ohmic
Ultrasound
https://purl.org/pe-repo/ocde/ford#4.02.01
Artificial Intelligence
Inteligencia artificial
Multispectral imagery
Imagen multiespectral
Meat quality
Calidad de la carne
Ultrasound
Ultrasonido
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.02.01
dc.subject.agrovoc.es_PE.fl_str_mv Artificial Intelligence
Inteligencia artificial
Multispectral imagery
Imagen multiespectral
Meat quality
Calidad de la carne
Ultrasound
Ultrasonido
description The application of computer technologies associated with sensors and artificial intelligence (AI) in the quantification and qualification of quality parameters of meat products of various domestic species is an area of research, development, and innovation of great relevance in the agri-food industry. This review covers the most recent advances in this area, highlighting the importance of computer vision, artificial intelligence, and ultrasonography in evaluating quality and efficiency in meat products’ production and monitoring processes. Various techniques and methodologies used to evaluate quality parameters such as colour, water holding capacity (WHC), pH, moisture, texture, and intramuscular fat, among others related to animal origin, breed and handling, are discussed. In addition, the benefits and practical applications of the technology in the meat industry are examined, such as the automation of inspection processes, accurate product classification, traceability, and food safety. While the potential of artificial intelligence associated with sensor development in the meat industry is promising, it is crucial to recognize that this is an evolving field. This technology offers innovative solutions that enable efficient, cost effective, and consumer-oriented production. However, it also underlines the urgent need for further research and development of new techniques and tools such as artificial intelligence algorithms, the development of more sensitive and accurate multispectral sensors, advances in computer vision for 3D image analysis and automated detection, and the integration of advanced ultrasonography with other technologies. Also crucial is the development of autonomous robotic systems for the automation of inspection processes, the implementation of real-time monitoring systems for traceability and food safety, and the creation of intuitive interfaces for human-machine interaction. In addition, the automation of sensory analysis and the optimisation of sustainability and energy efficiency are key areas that require immediate attention to address the current challenges in this agri-food and agri-industrial sector, highlighting and emphasising the importance of ongoing innovation in the field.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-30T19:04:59Z
dc.date.available.none.fl_str_mv 2024-09-30T19:04:59Z
dc.date.issued.fl_str_mv 2024-09-20
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Alvarez-García, W.Y.; Mendoza, L.; Muñoz-Vílchez, Y.Y.; Nuñez-Melgar, D.C.; & Quilcate-Pairazaman, C. (2024). Implementing artificial intelligence to measure meat quality parameters in local market traceability processes. International Journal of Food Science and Technology (2024). doi:10.1111/ijfs.17546
dc.identifier.issn.none.fl_str_mv 1365-2621
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2589
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1111/ijfs.17546
identifier_str_mv Alvarez-García, W.Y.; Mendoza, L.; Muñoz-Vílchez, Y.Y.; Nuñez-Melgar, D.C.; & Quilcate-Pairazaman, C. (2024). Implementing artificial intelligence to measure meat quality parameters in local market traceability processes. International Journal of Food Science and Technology (2024). doi:10.1111/ijfs.17546
1365-2621
url https://hdl.handle.net/20.500.12955/2589
https://doi.org/10.1111/ijfs.17546
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:1365-2621
dc.relation.ispartofseries.es_PE.fl_str_mv International Journal of Food Science and Technology
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv John Wiley & Sons Inc.
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/30c27d5b-7c36-471e-a4b4-de0833fd0d18/download
https://repositorio.inia.gob.pe/bitstreams/027610f3-9f05-49bf-8f4e-5bf3bec824c3/download
https://repositorio.inia.gob.pe/bitstreams/d6a47665-21ab-4957-8cd9-2d0933cdaca3/download
https://repositorio.inia.gob.pe/bitstreams/e312edfc-8056-4691-9023-7a8cbbc7be85/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
991cd7419f18b2920022a382ca8df936
aa3187c73059292c175ba06f9266a08d
4d4a5563e7aa26b1b1bb724c38331c61
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331742648303616
spelling Alvarez García, Wuesley YusmeinMendoza, LauraMuñoz Vílchez, Yudith YohanyCasanova Núñez-Melgar, DavidQuilcate Pairazaman, Carlos2024-09-30T19:04:59Z2024-09-30T19:04:59Z2024-09-20Alvarez-García, W.Y.; Mendoza, L.; Muñoz-Vílchez, Y.Y.; Nuñez-Melgar, D.C.; & Quilcate-Pairazaman, C. (2024). Implementing artificial intelligence to measure meat quality parameters in local market traceability processes. International Journal of Food Science and Technology (2024). doi:10.1111/ijfs.175461365-2621https://hdl.handle.net/20.500.12955/2589https://doi.org/10.1111/ijfs.17546The application of computer technologies associated with sensors and artificial intelligence (AI) in the quantification and qualification of quality parameters of meat products of various domestic species is an area of research, development, and innovation of great relevance in the agri-food industry. This review covers the most recent advances in this area, highlighting the importance of computer vision, artificial intelligence, and ultrasonography in evaluating quality and efficiency in meat products’ production and monitoring processes. Various techniques and methodologies used to evaluate quality parameters such as colour, water holding capacity (WHC), pH, moisture, texture, and intramuscular fat, among others related to animal origin, breed and handling, are discussed. In addition, the benefits and practical applications of the technology in the meat industry are examined, such as the automation of inspection processes, accurate product classification, traceability, and food safety. While the potential of artificial intelligence associated with sensor development in the meat industry is promising, it is crucial to recognize that this is an evolving field. This technology offers innovative solutions that enable efficient, cost effective, and consumer-oriented production. However, it also underlines the urgent need for further research and development of new techniques and tools such as artificial intelligence algorithms, the development of more sensitive and accurate multispectral sensors, advances in computer vision for 3D image analysis and automated detection, and the integration of advanced ultrasonography with other technologies. Also crucial is the development of autonomous robotic systems for the automation of inspection processes, the implementation of real-time monitoring systems for traceability and food safety, and the creation of intuitive interfaces for human-machine interaction. In addition, the automation of sensory analysis and the optimisation of sustainability and energy efficiency are key areas that require immediate attention to address the current challenges in this agri-food and agri-industrial sector, highlighting and emphasising the importance of ongoing innovation in the field.To Project CUI 2432072: ‘Mejoramiento de la disponibilidad de material genético de ganado bovino con alto valor a nivel nacional. 7 departamentos’ of the Ministry of Agrarian Development and Irrigation – Peru.application/pdfengJohn Wiley & Sons Inc.GBurn:issn:1365-2621International Journal of Food Science and Technologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAArtificial IntelligenceComputer visionHyperspectral imagingMeat qualityOhmicUltrasoundhttps://purl.org/pe-repo/ocde/ford#4.02.01Artificial IntelligenceInteligencia artificialMultispectral imageryImagen multiespectralMeat qualityCalidad de la carneUltrasoundUltrasonidoImplementing artificial intelligence to measure meat quality parameters in local market traceability processesinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/30c27d5b-7c36-471e-a4b4-de0833fd0d18/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALAlvarez_et-al_2024_artificial_intelligence_meat.pdfAlvarez_et-al_2024_artificial_intelligence_meat.pdfapplication/pdf368451https://repositorio.inia.gob.pe/bitstreams/027610f3-9f05-49bf-8f4e-5bf3bec824c3/download991cd7419f18b2920022a382ca8df936MD51TEXTAlvarez_et-al_2024_artificial_intelligence_meat.pdf.txtAlvarez_et-al_2024_artificial_intelligence_meat.pdf.txtExtracted texttext/plain68061https://repositorio.inia.gob.pe/bitstreams/d6a47665-21ab-4957-8cd9-2d0933cdaca3/downloadaa3187c73059292c175ba06f9266a08dMD53THUMBNAILAlvarez_et-al_2024_artificial_intelligence_meat.pdf.jpgAlvarez_et-al_2024_artificial_intelligence_meat.pdf.jpgGenerated Thumbnailimage/jpeg1857https://repositorio.inia.gob.pe/bitstreams/e312edfc-8056-4691-9023-7a8cbbc7be85/download4d4a5563e7aa26b1b1bb724c38331c61MD5420.500.12955/2589oai:repositorio.inia.gob.pe:20.500.12955/25892024-11-28 23:05:49.719https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.892309
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).