Implementing artificial intelligence to measure meat quality parameters in local market traceability processes
Descripción del Articulo
The application of computer technologies associated with sensors and artificial intelligence (AI) in the quantification and qualification of quality parameters of meat products of various domestic species is an area of research, development, and innovation of great relevance in the agri-food industr...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:null:20.500.12955/2589 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12955/2589 https://doi.org/10.1111/ijfs.17546 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial Intelligence Computer vision Hyperspectral imaging Meat quality Ohmic Ultrasound https://purl.org/pe-repo/ocde/ford#4.02.01 Inteligencia artificial Multispectral imagery Imagen multiespectral Calidad de la carne Ultrasonido |
| id |
INIA_a426638085ced79aabaf3374b32970b8 |
|---|---|
| oai_identifier_str |
oai:null:20.500.12955/2589 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.es_PE.fl_str_mv |
Implementing artificial intelligence to measure meat quality parameters in local market traceability processes |
| title |
Implementing artificial intelligence to measure meat quality parameters in local market traceability processes |
| spellingShingle |
Implementing artificial intelligence to measure meat quality parameters in local market traceability processes Alvarez García, Wuesley Yusmein Artificial Intelligence Computer vision Hyperspectral imaging Meat quality Ohmic Ultrasound https://purl.org/pe-repo/ocde/ford#4.02.01 Artificial Intelligence Inteligencia artificial Multispectral imagery Imagen multiespectral Meat quality Calidad de la carne Ultrasound Ultrasonido |
| title_short |
Implementing artificial intelligence to measure meat quality parameters in local market traceability processes |
| title_full |
Implementing artificial intelligence to measure meat quality parameters in local market traceability processes |
| title_fullStr |
Implementing artificial intelligence to measure meat quality parameters in local market traceability processes |
| title_full_unstemmed |
Implementing artificial intelligence to measure meat quality parameters in local market traceability processes |
| title_sort |
Implementing artificial intelligence to measure meat quality parameters in local market traceability processes |
| author |
Alvarez García, Wuesley Yusmein |
| author_facet |
Alvarez García, Wuesley Yusmein Mendoza, Laura Muñoz Vílchez, Yudith Yohany Casanova Núñez-Melgar, David Quilcate Pairazaman, Carlos |
| author_role |
author |
| author2 |
Mendoza, Laura Muñoz Vílchez, Yudith Yohany Casanova Núñez-Melgar, David Quilcate Pairazaman, Carlos |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Alvarez García, Wuesley Yusmein Mendoza, Laura Muñoz Vílchez, Yudith Yohany Casanova Núñez-Melgar, David Quilcate Pairazaman, Carlos |
| dc.subject.es_PE.fl_str_mv |
Artificial Intelligence Computer vision Hyperspectral imaging Meat quality Ohmic Ultrasound |
| topic |
Artificial Intelligence Computer vision Hyperspectral imaging Meat quality Ohmic Ultrasound https://purl.org/pe-repo/ocde/ford#4.02.01 Artificial Intelligence Inteligencia artificial Multispectral imagery Imagen multiespectral Meat quality Calidad de la carne Ultrasound Ultrasonido |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.02.01 |
| dc.subject.agrovoc.es_PE.fl_str_mv |
Artificial Intelligence Inteligencia artificial Multispectral imagery Imagen multiespectral Meat quality Calidad de la carne Ultrasound Ultrasonido |
| description |
The application of computer technologies associated with sensors and artificial intelligence (AI) in the quantification and qualification of quality parameters of meat products of various domestic species is an area of research, development, and innovation of great relevance in the agri-food industry. This review covers the most recent advances in this area, highlighting the importance of computer vision, artificial intelligence, and ultrasonography in evaluating quality and efficiency in meat products’ production and monitoring processes. Various techniques and methodologies used to evaluate quality parameters such as colour, water holding capacity (WHC), pH, moisture, texture, and intramuscular fat, among others related to animal origin, breed and handling, are discussed. In addition, the benefits and practical applications of the technology in the meat industry are examined, such as the automation of inspection processes, accurate product classification, traceability, and food safety. While the potential of artificial intelligence associated with sensor development in the meat industry is promising, it is crucial to recognize that this is an evolving field. This technology offers innovative solutions that enable efficient, cost effective, and consumer-oriented production. However, it also underlines the urgent need for further research and development of new techniques and tools such as artificial intelligence algorithms, the development of more sensitive and accurate multispectral sensors, advances in computer vision for 3D image analysis and automated detection, and the integration of advanced ultrasonography with other technologies. Also crucial is the development of autonomous robotic systems for the automation of inspection processes, the implementation of real-time monitoring systems for traceability and food safety, and the creation of intuitive interfaces for human-machine interaction. In addition, the automation of sensory analysis and the optimisation of sustainability and energy efficiency are key areas that require immediate attention to address the current challenges in this agri-food and agri-industrial sector, highlighting and emphasising the importance of ongoing innovation in the field. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-09-30T19:04:59Z |
| dc.date.available.none.fl_str_mv |
2024-09-30T19:04:59Z |
| dc.date.issued.fl_str_mv |
2024-09-20 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Alvarez-García, W.Y.; Mendoza, L.; Muñoz-Vílchez, Y.Y.; Nuñez-Melgar, D.C.; & Quilcate-Pairazaman, C. (2024). Implementing artificial intelligence to measure meat quality parameters in local market traceability processes. International Journal of Food Science and Technology (2024). doi:10.1111/ijfs.17546 |
| dc.identifier.issn.none.fl_str_mv |
1365-2621 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2589 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1111/ijfs.17546 |
| identifier_str_mv |
Alvarez-García, W.Y.; Mendoza, L.; Muñoz-Vílchez, Y.Y.; Nuñez-Melgar, D.C.; & Quilcate-Pairazaman, C. (2024). Implementing artificial intelligence to measure meat quality parameters in local market traceability processes. International Journal of Food Science and Technology (2024). doi:10.1111/ijfs.17546 1365-2621 |
| url |
https://hdl.handle.net/20.500.12955/2589 https://doi.org/10.1111/ijfs.17546 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:1365-2621 |
| dc.relation.ispartofseries.es_PE.fl_str_mv |
International Journal of Food Science and Technology |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
John Wiley & Sons Inc. |
| dc.publisher.country.es_PE.fl_str_mv |
GB |
| dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
| dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/30c27d5b-7c36-471e-a4b4-de0833fd0d18/download https://repositorio.inia.gob.pe/bitstreams/027610f3-9f05-49bf-8f4e-5bf3bec824c3/download https://repositorio.inia.gob.pe/bitstreams/d6a47665-21ab-4957-8cd9-2d0933cdaca3/download https://repositorio.inia.gob.pe/bitstreams/e312edfc-8056-4691-9023-7a8cbbc7be85/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 991cd7419f18b2920022a382ca8df936 aa3187c73059292c175ba06f9266a08d 4d4a5563e7aa26b1b1bb724c38331c61 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1833331742648303616 |
| spelling |
Alvarez García, Wuesley YusmeinMendoza, LauraMuñoz Vílchez, Yudith YohanyCasanova Núñez-Melgar, DavidQuilcate Pairazaman, Carlos2024-09-30T19:04:59Z2024-09-30T19:04:59Z2024-09-20Alvarez-García, W.Y.; Mendoza, L.; Muñoz-Vílchez, Y.Y.; Nuñez-Melgar, D.C.; & Quilcate-Pairazaman, C. (2024). Implementing artificial intelligence to measure meat quality parameters in local market traceability processes. International Journal of Food Science and Technology (2024). doi:10.1111/ijfs.175461365-2621https://hdl.handle.net/20.500.12955/2589https://doi.org/10.1111/ijfs.17546The application of computer technologies associated with sensors and artificial intelligence (AI) in the quantification and qualification of quality parameters of meat products of various domestic species is an area of research, development, and innovation of great relevance in the agri-food industry. This review covers the most recent advances in this area, highlighting the importance of computer vision, artificial intelligence, and ultrasonography in evaluating quality and efficiency in meat products’ production and monitoring processes. Various techniques and methodologies used to evaluate quality parameters such as colour, water holding capacity (WHC), pH, moisture, texture, and intramuscular fat, among others related to animal origin, breed and handling, are discussed. In addition, the benefits and practical applications of the technology in the meat industry are examined, such as the automation of inspection processes, accurate product classification, traceability, and food safety. While the potential of artificial intelligence associated with sensor development in the meat industry is promising, it is crucial to recognize that this is an evolving field. This technology offers innovative solutions that enable efficient, cost effective, and consumer-oriented production. However, it also underlines the urgent need for further research and development of new techniques and tools such as artificial intelligence algorithms, the development of more sensitive and accurate multispectral sensors, advances in computer vision for 3D image analysis and automated detection, and the integration of advanced ultrasonography with other technologies. Also crucial is the development of autonomous robotic systems for the automation of inspection processes, the implementation of real-time monitoring systems for traceability and food safety, and the creation of intuitive interfaces for human-machine interaction. In addition, the automation of sensory analysis and the optimisation of sustainability and energy efficiency are key areas that require immediate attention to address the current challenges in this agri-food and agri-industrial sector, highlighting and emphasising the importance of ongoing innovation in the field.To Project CUI 2432072: ‘Mejoramiento de la disponibilidad de material genético de ganado bovino con alto valor a nivel nacional. 7 departamentos’ of the Ministry of Agrarian Development and Irrigation – Peru.application/pdfengJohn Wiley & Sons Inc.GBurn:issn:1365-2621International Journal of Food Science and Technologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAArtificial IntelligenceComputer visionHyperspectral imagingMeat qualityOhmicUltrasoundhttps://purl.org/pe-repo/ocde/ford#4.02.01Artificial IntelligenceInteligencia artificialMultispectral imageryImagen multiespectralMeat qualityCalidad de la carneUltrasoundUltrasonidoImplementing artificial intelligence to measure meat quality parameters in local market traceability processesinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/30c27d5b-7c36-471e-a4b4-de0833fd0d18/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALAlvarez_et-al_2024_artificial_intelligence_meat.pdfAlvarez_et-al_2024_artificial_intelligence_meat.pdfapplication/pdf368451https://repositorio.inia.gob.pe/bitstreams/027610f3-9f05-49bf-8f4e-5bf3bec824c3/download991cd7419f18b2920022a382ca8df936MD51TEXTAlvarez_et-al_2024_artificial_intelligence_meat.pdf.txtAlvarez_et-al_2024_artificial_intelligence_meat.pdf.txtExtracted texttext/plain68061https://repositorio.inia.gob.pe/bitstreams/d6a47665-21ab-4957-8cd9-2d0933cdaca3/downloadaa3187c73059292c175ba06f9266a08dMD53THUMBNAILAlvarez_et-al_2024_artificial_intelligence_meat.pdf.jpgAlvarez_et-al_2024_artificial_intelligence_meat.pdf.jpgGenerated Thumbnailimage/jpeg1857https://repositorio.inia.gob.pe/bitstreams/e312edfc-8056-4691-9023-7a8cbbc7be85/download4d4a5563e7aa26b1b1bb724c38331c61MD5420.500.12955/2589oai:repositorio.inia.gob.pe:20.500.12955/25892024-11-28 23:05:49.719https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.892309 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).