Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
Descripción del Articulo
In Peru, grasslands monitoring is essential to support public policies related to the identification, recovery and management of livestock systems. In this study, therefore, we evaluated the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW Peru). To do this, w...
| Autores: | , , , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:null:20.500.12955/1691 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12955/1691 https://doi.org/10.3390/land11050674 |
| Nivel de acceso: | acceso abierto |
| Materia: | Grassland dynamics Google Earth Engine (GEE) Sustainable livestock Remote sensing Random forest (RF) Landsat https://purl.org/pe-repo/ocde/ford#4.05.00 |
| id |
INIA_80fcf2679febaa2f30f09026570264b0 |
|---|---|
| oai_identifier_str |
oai:null:20.500.12955/1691 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.es_PE.fl_str_mv |
Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) |
| title |
Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) |
| spellingShingle |
Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) Atalaya Marin, Nilton Grassland dynamics Google Earth Engine (GEE) Sustainable livestock Remote sensing Random forest (RF) Landsat https://purl.org/pe-repo/ocde/ford#4.05.00 |
| title_short |
Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) |
| title_full |
Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) |
| title_fullStr |
Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) |
| title_full_unstemmed |
Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) |
| title_sort |
Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) |
| author |
Atalaya Marin, Nilton |
| author_facet |
Atalaya Marin, Nilton Barboza Castillo, Elgar Salas López, Rolando Vásquez Pérez, Héctor Vladimir Gómez Fernández, Darwin Terrones Murga, Renzo E. Rojas Briceño, Nilton B. Oliva Cruz, Manuel Gamarra Torres, Oscar Ándres Silva López, Jhonsy Omar Turpo Cayo, Efrain |
| author_role |
author |
| author2 |
Barboza Castillo, Elgar Salas López, Rolando Vásquez Pérez, Héctor Vladimir Gómez Fernández, Darwin Terrones Murga, Renzo E. Rojas Briceño, Nilton B. Oliva Cruz, Manuel Gamarra Torres, Oscar Ándres Silva López, Jhonsy Omar Turpo Cayo, Efrain |
| author2_role |
author author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Atalaya Marin, Nilton Barboza Castillo, Elgar Salas López, Rolando Vásquez Pérez, Héctor Vladimir Gómez Fernández, Darwin Terrones Murga, Renzo E. Rojas Briceño, Nilton B. Oliva Cruz, Manuel Gamarra Torres, Oscar Ándres Silva López, Jhonsy Omar Turpo Cayo, Efrain |
| dc.subject.es_PE.fl_str_mv |
Grassland dynamics Google Earth Engine (GEE) Sustainable livestock Remote sensing Random forest (RF) Landsat |
| topic |
Grassland dynamics Google Earth Engine (GEE) Sustainable livestock Remote sensing Random forest (RF) Landsat https://purl.org/pe-repo/ocde/ford#4.05.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.05.00 |
| description |
In Peru, grasslands monitoring is essential to support public policies related to the identification, recovery and management of livestock systems. In this study, therefore, we evaluated the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW Peru). To do this, we used Landsat 5, 7 and 8 images and vegetation indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and soil adjusted vegetation index (SAVI). The data were processed in Google Earth Engine (GEE) platform for 1990, 2000, 2010 and 2020 through random forest (RF) classification reaching accuracies above 85%. The application of RF in GEE allowed surface mapping of grasslands with pressures higher than 85%. Interestingly, our results reported the increase of grasslands in both Pomacochas (from 2457.03 ha to 3659.37 ha) and Ventilla (from 1932.38 ha to 4056.26 ha) micro-watersheds during 1990–2020. Effectively, this study aims to provide useful information for territorial planning with potential replicability for other cattle-raising regions of the country. It could further be used to improve grassland management and promote semi-extensive livestock farming. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-06-02T21:45:18Z |
| dc.date.available.none.fl_str_mv |
2022-06-02T21:45:18Z |
| dc.date.issued.fl_str_mv |
2022-05-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. doi: 10.3390/land11050674 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/1691 |
| dc.identifier.journal.es_PE.fl_str_mv |
Land |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/land11050674 |
| identifier_str_mv |
Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. doi: 10.3390/land11050674 Land |
| url |
https://hdl.handle.net/20.500.12955/1691 https://doi.org/10.3390/land11050674 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.es_PE.fl_str_mv |
Land 2022, 11(5), 674 |
| dc.relation.publisherversion.es_PE.fl_str_mv |
https://doi.org/10.3390/land11050674 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.coverage.spatial.es_PE.fl_str_mv |
Perú |
| dc.publisher.es_PE.fl_str_mv |
MDPI |
| dc.publisher.country.es_PE.fl_str_mv |
Suiza |
| dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
| dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/f24eea1d-3c15-4789-8b07-db3cdd78f81f/download https://repositorio.inia.gob.pe/bitstreams/2e34c8ee-f865-47ee-8046-f8bce7a01a14/download https://repositorio.inia.gob.pe/bitstreams/30a32074-6d75-43ce-ad45-1a6e2e7ea395/download https://repositorio.inia.gob.pe/bitstreams/a33972f0-bb1f-4aed-9b27-91352de51ae2/download https://repositorio.inia.gob.pe/bitstreams/ac2b3044-a15c-49e8-a806-70128dc595fb/download https://repositorio.inia.gob.pe/bitstreams/a234875c-4a91-44be-a9a6-644cabf6752b/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8bf184a7f99f33c8054a1b5039d9d394 8bf184a7f99f33c8054a1b5039d9d394 bc190391cff9a491026fd32030514297 bc190391cff9a491026fd32030514297 86189add872ddddbd27e842b975a28e6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1833331745313783808 |
| spelling |
Atalaya Marin, NiltonBarboza Castillo, ElgarSalas López, RolandoVásquez Pérez, Héctor VladimirGómez Fernández, DarwinTerrones Murga, Renzo E.Rojas Briceño, Nilton B.Oliva Cruz, ManuelGamarra Torres, Oscar ÁndresSilva López, Jhonsy OmarTurpo Cayo, EfrainPerú2022-06-02T21:45:18Z2022-06-02T21:45:18Z2022-05-01Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. doi: 10.3390/land11050674https://hdl.handle.net/20.500.12955/1691Landhttps://doi.org/10.3390/land11050674In Peru, grasslands monitoring is essential to support public policies related to the identification, recovery and management of livestock systems. In this study, therefore, we evaluated the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW Peru). To do this, we used Landsat 5, 7 and 8 images and vegetation indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and soil adjusted vegetation index (SAVI). The data were processed in Google Earth Engine (GEE) platform for 1990, 2000, 2010 and 2020 through random forest (RF) classification reaching accuracies above 85%. The application of RF in GEE allowed surface mapping of grasslands with pressures higher than 85%. Interestingly, our results reported the increase of grasslands in both Pomacochas (from 2457.03 ha to 3659.37 ha) and Ventilla (from 1932.38 ha to 4056.26 ha) micro-watersheds during 1990–2020. Effectively, this study aims to provide useful information for territorial planning with potential replicability for other cattle-raising regions of the country. It could further be used to improve grassland management and promote semi-extensive livestock farming.Abstract. 1. Introduction. 2. Materials and Methods. 3. Results. 4. Discussion. 5. Conclusions. References.application/pdfspaMDPISuizaLand 2022, 11(5), 674https://doi.org/10.3390/land11050674info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAGrassland dynamicsGoogle Earth Engine (GEE)Sustainable livestockRemote sensingRandom forest (RF)Landsathttps://purl.org/pe-repo/ocde/ford#4.05.00Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)info:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/f24eea1d-3c15-4789-8b07-db3cdd78f81f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSpatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru).pdf.txtSpatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru).pdf.txtExtracted texttext/plain75503https://repositorio.inia.gob.pe/bitstreams/2e34c8ee-f865-47ee-8046-f8bce7a01a14/download8bf184a7f99f33c8054a1b5039d9d394MD53Atalaya-et-al_2022_Landsat_Data.pdf.txtAtalaya-et-al_2022_Landsat_Data.pdf.txtExtracted texttext/plain75503https://repositorio.inia.gob.pe/bitstreams/30a32074-6d75-43ce-ad45-1a6e2e7ea395/download8bf184a7f99f33c8054a1b5039d9d394MD56THUMBNAILSpatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru).pdf.jpgSpatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru).pdf.jpgGenerated Thumbnailimage/jpeg1655https://repositorio.inia.gob.pe/bitstreams/a33972f0-bb1f-4aed-9b27-91352de51ae2/downloadbc190391cff9a491026fd32030514297MD54Atalaya-et-al_2022_Landsat_Data.pdf.jpgAtalaya-et-al_2022_Landsat_Data.pdf.jpgGenerated Thumbnailimage/jpeg1655https://repositorio.inia.gob.pe/bitstreams/ac2b3044-a15c-49e8-a806-70128dc595fb/downloadbc190391cff9a491026fd32030514297MD57ORIGINALAtalaya-et-al_2022_Landsat_Data.pdfAtalaya-et-al_2022_Landsat_Data.pdfapplication/pdf5765753https://repositorio.inia.gob.pe/bitstreams/a234875c-4a91-44be-a9a6-644cabf6752b/download86189add872ddddbd27e842b975a28e6MD5520.500.12955/1691oai:repositorio.inia.gob.pe:20.500.12955/16912023-06-21 10:47:44.488https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.932913 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).