Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)

Descripción del Articulo

In Peru, grasslands monitoring is essential to support public policies related to the identification, recovery and management of livestock systems. In this study, therefore, we evaluated the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW Peru). To do this, w...

Descripción completa

Detalles Bibliográficos
Autores: Atalaya Marin, Nilton, Barboza Castillo, Elgar, Salas López, Rolando, Vásquez Pérez, Héctor Vladimir, Gómez Fernández, Darwin, Terrones Murga, Renzo E., Rojas Briceño, Nilton B., Oliva Cruz, Manuel, Gamarra Torres, Oscar Ándres, Silva López, Jhonsy Omar, Turpo Cayo, Efrain
Formato: artículo
Fecha de Publicación:2022
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:español
OAI Identifier:oai:null:20.500.12955/1691
Enlace del recurso:https://hdl.handle.net/20.500.12955/1691
https://doi.org/10.3390/land11050674
Nivel de acceso:acceso abierto
Materia:Grassland dynamics
Google Earth Engine (GEE)
Sustainable livestock
Remote sensing
Random forest (RF)
Landsat
https://purl.org/pe-repo/ocde/ford#4.05.00
id INIA_80fcf2679febaa2f30f09026570264b0
oai_identifier_str oai:null:20.500.12955/1691
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
title Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
spellingShingle Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
Atalaya Marin, Nilton
Grassland dynamics
Google Earth Engine (GEE)
Sustainable livestock
Remote sensing
Random forest (RF)
Landsat
https://purl.org/pe-repo/ocde/ford#4.05.00
title_short Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
title_full Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
title_fullStr Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
title_full_unstemmed Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
title_sort Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
author Atalaya Marin, Nilton
author_facet Atalaya Marin, Nilton
Barboza Castillo, Elgar
Salas López, Rolando
Vásquez Pérez, Héctor Vladimir
Gómez Fernández, Darwin
Terrones Murga, Renzo E.
Rojas Briceño, Nilton B.
Oliva Cruz, Manuel
Gamarra Torres, Oscar Ándres
Silva López, Jhonsy Omar
Turpo Cayo, Efrain
author_role author
author2 Barboza Castillo, Elgar
Salas López, Rolando
Vásquez Pérez, Héctor Vladimir
Gómez Fernández, Darwin
Terrones Murga, Renzo E.
Rojas Briceño, Nilton B.
Oliva Cruz, Manuel
Gamarra Torres, Oscar Ándres
Silva López, Jhonsy Omar
Turpo Cayo, Efrain
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Atalaya Marin, Nilton
Barboza Castillo, Elgar
Salas López, Rolando
Vásquez Pérez, Héctor Vladimir
Gómez Fernández, Darwin
Terrones Murga, Renzo E.
Rojas Briceño, Nilton B.
Oliva Cruz, Manuel
Gamarra Torres, Oscar Ándres
Silva López, Jhonsy Omar
Turpo Cayo, Efrain
dc.subject.es_PE.fl_str_mv Grassland dynamics
Google Earth Engine (GEE)
Sustainable livestock
Remote sensing
Random forest (RF)
Landsat
topic Grassland dynamics
Google Earth Engine (GEE)
Sustainable livestock
Remote sensing
Random forest (RF)
Landsat
https://purl.org/pe-repo/ocde/ford#4.05.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.05.00
description In Peru, grasslands monitoring is essential to support public policies related to the identification, recovery and management of livestock systems. In this study, therefore, we evaluated the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW Peru). To do this, we used Landsat 5, 7 and 8 images and vegetation indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and soil adjusted vegetation index (SAVI). The data were processed in Google Earth Engine (GEE) platform for 1990, 2000, 2010 and 2020 through random forest (RF) classification reaching accuracies above 85%. The application of RF in GEE allowed surface mapping of grasslands with pressures higher than 85%. Interestingly, our results reported the increase of grasslands in both Pomacochas (from 2457.03 ha to 3659.37 ha) and Ventilla (from 1932.38 ha to 4056.26 ha) micro-watersheds during 1990–2020. Effectively, this study aims to provide useful information for territorial planning with potential replicability for other cattle-raising regions of the country. It could further be used to improve grassland management and promote semi-extensive livestock farming.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-02T21:45:18Z
dc.date.available.none.fl_str_mv 2022-06-02T21:45:18Z
dc.date.issued.fl_str_mv 2022-05-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. doi: 10.3390/land11050674
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/1691
dc.identifier.journal.es_PE.fl_str_mv Land
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/land11050674
identifier_str_mv Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. doi: 10.3390/land11050674
Land
url https://hdl.handle.net/20.500.12955/1691
https://doi.org/10.3390/land11050674
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.es_PE.fl_str_mv Land 2022, 11(5), 674
dc.relation.publisherversion.es_PE.fl_str_mv https://doi.org/10.3390/land11050674
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.coverage.spatial.es_PE.fl_str_mv Perú
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv Suiza
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/f24eea1d-3c15-4789-8b07-db3cdd78f81f/download
https://repositorio.inia.gob.pe/bitstreams/2e34c8ee-f865-47ee-8046-f8bce7a01a14/download
https://repositorio.inia.gob.pe/bitstreams/30a32074-6d75-43ce-ad45-1a6e2e7ea395/download
https://repositorio.inia.gob.pe/bitstreams/a33972f0-bb1f-4aed-9b27-91352de51ae2/download
https://repositorio.inia.gob.pe/bitstreams/ac2b3044-a15c-49e8-a806-70128dc595fb/download
https://repositorio.inia.gob.pe/bitstreams/a234875c-4a91-44be-a9a6-644cabf6752b/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8bf184a7f99f33c8054a1b5039d9d394
8bf184a7f99f33c8054a1b5039d9d394
bc190391cff9a491026fd32030514297
bc190391cff9a491026fd32030514297
86189add872ddddbd27e842b975a28e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331745313783808
spelling Atalaya Marin, NiltonBarboza Castillo, ElgarSalas López, RolandoVásquez Pérez, Héctor VladimirGómez Fernández, DarwinTerrones Murga, Renzo E.Rojas Briceño, Nilton B.Oliva Cruz, ManuelGamarra Torres, Oscar ÁndresSilva López, Jhonsy OmarTurpo Cayo, EfrainPerú2022-06-02T21:45:18Z2022-06-02T21:45:18Z2022-05-01Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. doi: 10.3390/land11050674https://hdl.handle.net/20.500.12955/1691Landhttps://doi.org/10.3390/land11050674In Peru, grasslands monitoring is essential to support public policies related to the identification, recovery and management of livestock systems. In this study, therefore, we evaluated the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW Peru). To do this, we used Landsat 5, 7 and 8 images and vegetation indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and soil adjusted vegetation index (SAVI). The data were processed in Google Earth Engine (GEE) platform for 1990, 2000, 2010 and 2020 through random forest (RF) classification reaching accuracies above 85%. The application of RF in GEE allowed surface mapping of grasslands with pressures higher than 85%. Interestingly, our results reported the increase of grasslands in both Pomacochas (from 2457.03 ha to 3659.37 ha) and Ventilla (from 1932.38 ha to 4056.26 ha) micro-watersheds during 1990–2020. Effectively, this study aims to provide useful information for territorial planning with potential replicability for other cattle-raising regions of the country. It could further be used to improve grassland management and promote semi-extensive livestock farming.Abstract. 1. Introduction. 2. Materials and Methods. 3. Results. 4. Discussion. 5. Conclusions. References.application/pdfspaMDPISuizaLand 2022, 11(5), 674https://doi.org/10.3390/land11050674info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAGrassland dynamicsGoogle Earth Engine (GEE)Sustainable livestockRemote sensingRandom forest (RF)Landsathttps://purl.org/pe-repo/ocde/ford#4.05.00Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)info:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/f24eea1d-3c15-4789-8b07-db3cdd78f81f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSpatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru).pdf.txtSpatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru).pdf.txtExtracted texttext/plain75503https://repositorio.inia.gob.pe/bitstreams/2e34c8ee-f865-47ee-8046-f8bce7a01a14/download8bf184a7f99f33c8054a1b5039d9d394MD53Atalaya-et-al_2022_Landsat_Data.pdf.txtAtalaya-et-al_2022_Landsat_Data.pdf.txtExtracted texttext/plain75503https://repositorio.inia.gob.pe/bitstreams/30a32074-6d75-43ce-ad45-1a6e2e7ea395/download8bf184a7f99f33c8054a1b5039d9d394MD56THUMBNAILSpatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru).pdf.jpgSpatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru).pdf.jpgGenerated Thumbnailimage/jpeg1655https://repositorio.inia.gob.pe/bitstreams/a33972f0-bb1f-4aed-9b27-91352de51ae2/downloadbc190391cff9a491026fd32030514297MD54Atalaya-et-al_2022_Landsat_Data.pdf.jpgAtalaya-et-al_2022_Landsat_Data.pdf.jpgGenerated Thumbnailimage/jpeg1655https://repositorio.inia.gob.pe/bitstreams/ac2b3044-a15c-49e8-a806-70128dc595fb/downloadbc190391cff9a491026fd32030514297MD57ORIGINALAtalaya-et-al_2022_Landsat_Data.pdfAtalaya-et-al_2022_Landsat_Data.pdfapplication/pdf5765753https://repositorio.inia.gob.pe/bitstreams/a234875c-4a91-44be-a9a6-644cabf6752b/download86189add872ddddbd27e842b975a28e6MD5520.500.12955/1691oai:repositorio.inia.gob.pe:20.500.12955/16912023-06-21 10:47:44.488https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.932913
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).