Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru

Descripción del Articulo

Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's...

Descripción completa

Detalles Bibliográficos
Autores: Saravia Navarro, David, Salazar Coronel, Wilian, Valqui Valqui, Lamberto, Quille Mamani, Javier Alvaro, Porras Jorge, Rossana, Corredor Arizapana, Flor Anita, Barboza Castillo, Elgar, Vásquez Pérez, Héctor Vladimir, Arbizu Berrocal, Carlos Irvin
Formato: artículo
Fecha de Publicación:2022
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/1852
Enlace del recurso:https://hdl.handle.net/20.500.12955/1852
https://doi.org/10.20944/preprints202205.0231.v1
Nivel de acceso:acceso abierto
Materia:Vegetation índices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.04.00
id INIA_6e697ab3a38e2a315cad5bfd5194435a
oai_identifier_str oai:null:20.500.12955/1852
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
spellingShingle Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
Saravia Navarro, David
Vegetation índices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.04.00
title_short Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_full Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_fullStr Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_full_unstemmed Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_sort Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
author Saravia Navarro, David
author_facet Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Arbizu Berrocal, Carlos Irvin
author_role author
author2 Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Arbizu Berrocal, Carlos Irvin
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Arbizu Berrocal, Carlos Irvin
dc.subject.es_PE.fl_str_mv Vegetation índices
Precision farming
Hybrid
Phenotyping
Remote sensing
topic Vegetation índices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.04.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.04.00
description Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. In the present study, highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions in agriculture in Peru.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-05T16:59:47Z
dc.date.available.none.fl_str_mv 2022-09-05T16:59:47Z
dc.date.issued.fl_str_mv 2022-05-17
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Saravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/1852
dc.identifier.journal.es_PE.fl_str_mv Preprints
dc.identifier.doi.none.fl_str_mv https://doi.org/10.20944/preprints202205.0231.v1
identifier_str_mv Saravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1
Preprints
url https://hdl.handle.net/20.500.12955/1852
https://doi.org/10.20944/preprints202205.0231.v1
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.publisherversion.es_PE.fl_str_mv https://doi.org/10.20944/preprints202205.0231.v1
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.coverage.spatial.es_PE.fl_str_mv Perú
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv Suiza
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/8cb191b5-83dc-4bfa-bf9f-8b9a26be853f/download
https://repositorio.inia.gob.pe/bitstreams/469bf3e3-3d44-435b-a458-4e0cfb6ae885/download
https://repositorio.inia.gob.pe/bitstreams/652ec80b-26b3-46fb-894d-4e12f226eb44/download
https://repositorio.inia.gob.pe/bitstreams/c4cb0cd4-df95-4c85-acd1-111c2b50c155/download
https://repositorio.inia.gob.pe/bitstreams/6f761910-ac33-41b9-ad95-1389ed80d0e6/download
https://repositorio.inia.gob.pe/bitstreams/4fb30d6a-8d95-4005-bffa-436f053242e5/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
1ea6f69294a959404126976e3e1de8a7
1ea6f69294a959404126976e3e1de8a7
03f286eb9ee258271e7d8b9ef2633915
03f286eb9ee258271e7d8b9ef2633915
81eefb4913a9b9ef24ae452646180800
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331684878057472
spelling Saravia Navarro, DavidSalazar Coronel, WilianValqui Valqui, LambertoQuille Mamani, Javier AlvaroPorras Jorge, RossanaCorredor Arizapana, Flor AnitaBarboza Castillo, ElgarVásquez Pérez, Héctor VladimirArbizu Berrocal, Carlos IrvinPerú2022-09-05T16:59:47Z2022-09-05T16:59:47Z2022-05-17Saravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1https://hdl.handle.net/20.500.12955/1852Preprintshttps://doi.org/10.20944/preprints202205.0231.v1Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. In the present study, highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions in agriculture in Peru.Abstract. 1. Introduction. 2. Materials and Methods. 3. Results. 4. Discussion. 5. Conclusions. References.application/pdfengMDPISuizainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAVegetation índicesPrecision farmingHybridPhenotypingRemote sensinghttps://purl.org/pe-repo/ocde/ford#4.04.00Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peruinfo:eu-repo/semantics/articlehttps://doi.org/10.20944/preprints202205.0231.v1LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/8cb191b5-83dc-4bfa-bf9f-8b9a26be853f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTArbizu_2022_Zea_mays.pdf.txtArbizu_2022_Zea_mays.pdf.txtExtracted texttext/plain43705https://repositorio.inia.gob.pe/bitstreams/469bf3e3-3d44-435b-a458-4e0cfb6ae885/download1ea6f69294a959404126976e3e1de8a7MD53Arbizu-et-al_2022_Zea_mays.pdf.txtArbizu-et-al_2022_Zea_mays.pdf.txtExtracted texttext/plain43705https://repositorio.inia.gob.pe/bitstreams/652ec80b-26b3-46fb-894d-4e12f226eb44/download1ea6f69294a959404126976e3e1de8a7MD56THUMBNAILArbizu_2022_Zea_mays.pdf.jpgArbizu_2022_Zea_mays.pdf.jpgGenerated Thumbnailimage/jpeg1613https://repositorio.inia.gob.pe/bitstreams/c4cb0cd4-df95-4c85-acd1-111c2b50c155/download03f286eb9ee258271e7d8b9ef2633915MD54Arbizu-et-al_2022_Zea_mays.pdf.jpgArbizu-et-al_2022_Zea_mays.pdf.jpgGenerated Thumbnailimage/jpeg1613https://repositorio.inia.gob.pe/bitstreams/6f761910-ac33-41b9-ad95-1389ed80d0e6/download03f286eb9ee258271e7d8b9ef2633915MD57ORIGINALArbizu-et-al_2022_Zea_mays.pdfArbizu-et-al_2022_Zea_mays.pdfapplication/pdf1338464https://repositorio.inia.gob.pe/bitstreams/4fb30d6a-8d95-4005-bffa-436f053242e5/download81eefb4913a9b9ef24ae452646180800MD5520.500.12955/1852oai:repositorio.inia.gob.pe:20.500.12955/18522023-08-18 12:32:52.641https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).