Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
Descripción del Articulo
Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's...
Autores: | , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:null:20.500.12955/1852 |
Enlace del recurso: | https://hdl.handle.net/20.500.12955/1852 https://doi.org/10.20944/preprints202205.0231.v1 |
Nivel de acceso: | acceso abierto |
Materia: | Vegetation índices Precision farming Hybrid Phenotyping Remote sensing https://purl.org/pe-repo/ocde/ford#4.04.00 |
id |
INIA_6e697ab3a38e2a315cad5bfd5194435a |
---|---|
oai_identifier_str |
oai:null:20.500.12955/1852 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.es_PE.fl_str_mv |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru |
title |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru |
spellingShingle |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru Saravia Navarro, David Vegetation índices Precision farming Hybrid Phenotyping Remote sensing https://purl.org/pe-repo/ocde/ford#4.04.00 |
title_short |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru |
title_full |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru |
title_fullStr |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru |
title_full_unstemmed |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru |
title_sort |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru |
author |
Saravia Navarro, David |
author_facet |
Saravia Navarro, David Salazar Coronel, Wilian Valqui Valqui, Lamberto Quille Mamani, Javier Alvaro Porras Jorge, Rossana Corredor Arizapana, Flor Anita Barboza Castillo, Elgar Vásquez Pérez, Héctor Vladimir Arbizu Berrocal, Carlos Irvin |
author_role |
author |
author2 |
Salazar Coronel, Wilian Valqui Valqui, Lamberto Quille Mamani, Javier Alvaro Porras Jorge, Rossana Corredor Arizapana, Flor Anita Barboza Castillo, Elgar Vásquez Pérez, Héctor Vladimir Arbizu Berrocal, Carlos Irvin |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Saravia Navarro, David Salazar Coronel, Wilian Valqui Valqui, Lamberto Quille Mamani, Javier Alvaro Porras Jorge, Rossana Corredor Arizapana, Flor Anita Barboza Castillo, Elgar Vásquez Pérez, Héctor Vladimir Arbizu Berrocal, Carlos Irvin |
dc.subject.es_PE.fl_str_mv |
Vegetation índices Precision farming Hybrid Phenotyping Remote sensing |
topic |
Vegetation índices Precision farming Hybrid Phenotyping Remote sensing https://purl.org/pe-repo/ocde/ford#4.04.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.04.00 |
description |
Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. In the present study, highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions in agriculture in Peru. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-05T16:59:47Z |
dc.date.available.none.fl_str_mv |
2022-09-05T16:59:47Z |
dc.date.issued.fl_str_mv |
2022-05-17 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Saravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/1852 |
dc.identifier.journal.es_PE.fl_str_mv |
Preprints |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.20944/preprints202205.0231.v1 |
identifier_str_mv |
Saravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1 Preprints |
url |
https://hdl.handle.net/20.500.12955/1852 https://doi.org/10.20944/preprints202205.0231.v1 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.publisherversion.es_PE.fl_str_mv |
https://doi.org/10.20944/preprints202205.0231.v1 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.coverage.spatial.es_PE.fl_str_mv |
Perú |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.publisher.country.es_PE.fl_str_mv |
Suiza |
dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/8cb191b5-83dc-4bfa-bf9f-8b9a26be853f/download https://repositorio.inia.gob.pe/bitstreams/469bf3e3-3d44-435b-a458-4e0cfb6ae885/download https://repositorio.inia.gob.pe/bitstreams/652ec80b-26b3-46fb-894d-4e12f226eb44/download https://repositorio.inia.gob.pe/bitstreams/c4cb0cd4-df95-4c85-acd1-111c2b50c155/download https://repositorio.inia.gob.pe/bitstreams/6f761910-ac33-41b9-ad95-1389ed80d0e6/download https://repositorio.inia.gob.pe/bitstreams/4fb30d6a-8d95-4005-bffa-436f053242e5/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 1ea6f69294a959404126976e3e1de8a7 1ea6f69294a959404126976e3e1de8a7 03f286eb9ee258271e7d8b9ef2633915 03f286eb9ee258271e7d8b9ef2633915 81eefb4913a9b9ef24ae452646180800 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1833331684878057472 |
spelling |
Saravia Navarro, DavidSalazar Coronel, WilianValqui Valqui, LambertoQuille Mamani, Javier AlvaroPorras Jorge, RossanaCorredor Arizapana, Flor AnitaBarboza Castillo, ElgarVásquez Pérez, Héctor VladimirArbizu Berrocal, Carlos IrvinPerú2022-09-05T16:59:47Z2022-09-05T16:59:47Z2022-05-17Saravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1https://hdl.handle.net/20.500.12955/1852Preprintshttps://doi.org/10.20944/preprints202205.0231.v1Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. In the present study, highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions in agriculture in Peru.Abstract. 1. Introduction. 2. Materials and Methods. 3. Results. 4. Discussion. 5. Conclusions. References.application/pdfengMDPISuizainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAVegetation índicesPrecision farmingHybridPhenotypingRemote sensinghttps://purl.org/pe-repo/ocde/ford#4.04.00Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peruinfo:eu-repo/semantics/articlehttps://doi.org/10.20944/preprints202205.0231.v1LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/8cb191b5-83dc-4bfa-bf9f-8b9a26be853f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTArbizu_2022_Zea_mays.pdf.txtArbizu_2022_Zea_mays.pdf.txtExtracted texttext/plain43705https://repositorio.inia.gob.pe/bitstreams/469bf3e3-3d44-435b-a458-4e0cfb6ae885/download1ea6f69294a959404126976e3e1de8a7MD53Arbizu-et-al_2022_Zea_mays.pdf.txtArbizu-et-al_2022_Zea_mays.pdf.txtExtracted texttext/plain43705https://repositorio.inia.gob.pe/bitstreams/652ec80b-26b3-46fb-894d-4e12f226eb44/download1ea6f69294a959404126976e3e1de8a7MD56THUMBNAILArbizu_2022_Zea_mays.pdf.jpgArbizu_2022_Zea_mays.pdf.jpgGenerated Thumbnailimage/jpeg1613https://repositorio.inia.gob.pe/bitstreams/c4cb0cd4-df95-4c85-acd1-111c2b50c155/download03f286eb9ee258271e7d8b9ef2633915MD54Arbizu-et-al_2022_Zea_mays.pdf.jpgArbizu-et-al_2022_Zea_mays.pdf.jpgGenerated Thumbnailimage/jpeg1613https://repositorio.inia.gob.pe/bitstreams/6f761910-ac33-41b9-ad95-1389ed80d0e6/download03f286eb9ee258271e7d8b9ef2633915MD57ORIGINALArbizu-et-al_2022_Zea_mays.pdfArbizu-et-al_2022_Zea_mays.pdfapplication/pdf1338464https://repositorio.inia.gob.pe/bitstreams/4fb30d6a-8d95-4005-bffa-436f053242e5/download81eefb4913a9b9ef24ae452646180800MD5520.500.12955/1852oai:repositorio.inia.gob.pe:20.500.12955/18522023-08-18 12:32:52.641https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).