Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy
Descripción del Articulo
Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2017 |
| Institución: | Instituto Geológico, Minero y Metalúrgico |
| Repositorio: | INGEMMET-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ingemmet.gob.pe:20.500.12544/1170 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12544/1170 https://doi.org/10.1002/2017JB014020 |
| Nivel de acceso: | acceso abierto |
| Materia: | Erupciones volcánicas Vapor de agua Transporte de sedimentos Histéresis Geomorfología Volcán Sabancaya |
| id |
INGEMMET_0a00e6cb78df59847f7ca4b045dd1792 |
|---|---|
| oai_identifier_str |
oai:repositorio.ingemmet.gob.pe:20.500.12544/1170 |
| network_acronym_str |
INGEMMET |
| network_name_str |
INGEMMET-Institucional |
| repository_id_str |
2991 |
| dc.title.es_PE.fl_str_mv |
Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy |
| title |
Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy |
| spellingShingle |
Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy Kern, Christoph Erupciones volcánicas Vapor de agua Transporte de sedimentos Histéresis Geomorfología Volcán Sabancaya |
| title_short |
Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy |
| title_full |
Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy |
| title_fullStr |
Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy |
| title_full_unstemmed |
Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy |
| title_sort |
Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy |
| author |
Kern, Christoph |
| author_facet |
Kern, Christoph Masías Alvarez, Pablo Jorge Apaza Choquehuayta, Fredy Erlingtton Reath, Kevin A. Platt, Ulrich |
| author_role |
author |
| author2 |
Masías Alvarez, Pablo Jorge Apaza Choquehuayta, Fredy Erlingtton Reath, Kevin A. Platt, Ulrich |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Kern, Christoph Masías Alvarez, Pablo Jorge Apaza Choquehuayta, Fredy Erlingtton Reath, Kevin A. Platt, Ulrich |
| dc.subject.es_PE.fl_str_mv |
Erupciones volcánicas Vapor de agua Transporte de sedimentos Histéresis Geomorfología Volcán Sabancaya |
| topic |
Erupciones volcánicas Vapor de agua Transporte de sedimentos Histéresis Geomorfología Volcán Sabancaya |
| description |
Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2018-03-22T20:32:18Z |
| dc.date.available.none.fl_str_mv |
2018-03-22T20:32:18Z |
| dc.date.issued.fl_str_mv |
2017-05 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Kern, C.; Masías, P.; Apaza, F.; Reath, K. A. & Platt, U. (2017) - Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy. Journal of Geophysical Research: Solid Earth, 122 (5): 3540–3564. Doi: 10.1002/2017JB014020. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12544/1170 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1002/2017JB014020 |
| dc.identifier.journal.es_PE.fl_str_mv |
Journal of Geophysical Research: Solid Earth |
| dc.identifier.bibliographicCitation.es_PE.fl_str_mv |
Journal of Geophysical Research: Solid Earth, v.122, n.5, 2017 |
| identifier_str_mv |
Kern, C.; Masías, P.; Apaza, F.; Reath, K. A. & Platt, U. (2017) - Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy. Journal of Geophysical Research: Solid Earth, 122 (5): 3540–3564. Doi: 10.1002/2017JB014020. Journal of Geophysical Research: Solid Earth Journal of Geophysical Research: Solid Earth, v.122, n.5, 2017 |
| url |
https://hdl.handle.net/20.500.12544/1170 https://doi.org/10.1002/2017JB014020 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2169-9356 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.coverage.spatial.es_PE.fl_str_mv |
Cordillera Occidental Arequipa Perú |
| dc.publisher.es_PE.fl_str_mv |
American Geophysical Union |
| dc.publisher.country.es_PE.fl_str_mv |
US |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional INGEMMET Instituto Geológico, Minero y Metalúrgico – INGEMMET |
| dc.source.none.fl_str_mv |
reponame:INGEMMET-Institucional instname:Instituto Geológico, Minero y Metalúrgico instacron:INGEMMET |
| instname_str |
Instituto Geológico, Minero y Metalúrgico |
| instacron_str |
INGEMMET |
| institution |
INGEMMET |
| reponame_str |
INGEMMET-Institucional |
| collection |
INGEMMET-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1170/2/license.txt https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1170/3/Kern-Remote_measurement_of_high_preeruptive_water.pdf https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1170/4/Kern-Remote_measurement_of_high_preeruptive_water.pdf.txt https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1170/5/Kern-Remote_measurement_of_high_preeruptive_water.pdf.jpg |
| bitstream.checksum.fl_str_mv |
ecccc10c448afdeacc04912e07a3ed65 429ae1a3d4c321bf65e04012037900c1 13ee8bb4c4c7043c41de2c1add2d0302 e43200061f2c5bdf2593d3d866ec57fb |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INGEMMET |
| repository.mail.fl_str_mv |
repositorio@ingemmet.gob.pe |
| _version_ |
1815350284549881856 |
| spelling |
Kern, ChristophMasías Alvarez, Pablo JorgeApaza Choquehuayta, Fredy ErlingttonReath, Kevin A.Platt, UlrichCordillera OccidentalArequipaPerú2018-03-22T20:32:18Z2018-03-22T20:32:18Z2017-05Kern, C.; Masías, P.; Apaza, F.; Reath, K. A. & Platt, U. (2017) - Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy. Journal of Geophysical Research: Solid Earth, 122 (5): 3540–3564. Doi: 10.1002/2017JB014020.https://hdl.handle.net/20.500.12544/1170https://doi.org/10.1002/2017JB014020Journal of Geophysical Research: Solid EarthJournal of Geophysical Research: Solid Earth, v.122, n.5, 2017Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.Peer reviewedapplication/pdfengAmerican Geophysical UnionUSurn:issn:2169-9356info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Repositorio Institucional INGEMMETInstituto Geológico, Minero y Metalúrgico – INGEMMETreponame:INGEMMET-Institucionalinstname:Instituto Geológico, Minero y Metalúrgicoinstacron:INGEMMETErupciones volcánicasVapor de aguaTransporte de sedimentosHistéresisGeomorfologíaVolcán SabancayaRemote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopyinfo:eu-repo/semantics/articleVulcanologíaLICENSElicense.txtlicense.txttext/plain; charset=utf-81567https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1170/2/license.txtecccc10c448afdeacc04912e07a3ed65MD52ORIGINALKern-Remote_measurement_of_high_preeruptive_water.pdfKern-Remote_measurement_of_high_preeruptive_water.pdfapplication/pdf1931634https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1170/3/Kern-Remote_measurement_of_high_preeruptive_water.pdf429ae1a3d4c321bf65e04012037900c1MD53TEXTKern-Remote_measurement_of_high_preeruptive_water.pdf.txtKern-Remote_measurement_of_high_preeruptive_water.pdf.txtExtracted texttext/plain114703https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1170/4/Kern-Remote_measurement_of_high_preeruptive_water.pdf.txt13ee8bb4c4c7043c41de2c1add2d0302MD54THUMBNAILKern-Remote_measurement_of_high_preeruptive_water.pdf.jpgKern-Remote_measurement_of_high_preeruptive_water.pdf.jpgGenerated Thumbnailimage/jpeg30984https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/1170/5/Kern-Remote_measurement_of_high_preeruptive_water.pdf.jpge43200061f2c5bdf2593d3d866ec57fbMD5520.500.12544/1170oai:repositorio.ingemmet.gob.pe:20.500.12544/11702019-05-17 03:00:56.346Repositorio Institucional INGEMMETrepositorio@ingemmet.gob.peTGljZW5jaWEgZGUgVXNvCgpFbCBJbnN0aXR1dG8gR2VvbMOzZ2ljbywgTWluZXJvIHkgTWV0YWzDunJnaWNvIOKAkyBJTkdFTU1FVCwgZGlmdW5kZSBtZWRpYW50ZSBzdSByZXBvc2l0b3JpbyBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSB5IHTDqWNuaWNhIHByb2R1Y2lkYSBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIGluc3RpdHVjacOzbi4gRWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIGRpZ2l0YWxlcyBlcyBkZSBhY2Nlc28gYWJpZXJ0byBwYXJhIHRvZGEgcGVyc29uYSBpbnRlcmVzYWRhLgoKU2UgYWNlcHRhIGxhIGRpZnVzacOzbiBww7pibGljYSBkZSBsYSBvYnJhLCBzdSBjb3BpYSB5IHJlcHJvZHVjacOzbi4gUGFyYSBlbGxvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKLSBFbCBuZWNlc2FyaW8gcmVjb25vY2ltaWVudG8gZGUgbGEgYXV0b3LDrWEgZGUgbGEgb2JyYSwgaWRlbnRpZmljYW5kbyBvcG9ydHVuYSB5IGNvcnJlY3RhbWVudGUgYSBsYSBwZXJzb25hIHF1ZSBwb3NlYSBsb3MgZGVyZWNob3MgZGUgYXV0b3IuCi0gTm8gZXN0w6EgcGVybWl0aWRvIGVsIHVzbyBpbmRlYmlkbyBkZSBsYSBvYnJhIGNvbiBmaW5lcyBkZSBsdWNybyBvIGN1YWxxdWllciB0aXBvIGRlIGFjdGl2aWRhZCBxdWUgcHJvZHV6Y2EgZ2FuYW5jaWFzIGEgbGFzIHBlcnNvbmFzIHF1ZSBsbyBkaWZ1bmRlbiBzaW4gZWwgY29uc2VudGltaWVudG8gZGVsIGF1dG9yLgotIExvcyB0cmFiYWpvcyBxdWUgc2UgcHJvZHV6Y2FuIGEgcGFydGlyIGRlIGxhIG9icmEgZGViZW4gcG9zZWVyIGxhIGNpdGFjacOzbiBwZXJ0aW5lbnRlIGRlIGFjdWVyZG8gYSBjdWFscXVpZXJhIGRlIGxvcyBlc3RpbG9zIChBUEEsIElTTywgVmFuY3V2ZXIsIGV0YykgZWxlZ2lkb3MgcGFyYSBsYSByZWRhY2Npw7NuIGRlIGxhcyByZWZlcmVuY2lhcyBiaWJsaW9ncsOhZmljYXMuIENhc28gY29udHJhcmlvIHNlIGluY3Vycmlyw6EgZW4gbGEgZmlndXJhIGp1csOtZGljYSBkZWwgcGxhZ2lvLgoKTG9zIGRlcmVjaG9zIG1vcmFsZXMgZGVsIGF1dG9yIG5vIHNvbiBhZmVjdGFkb3MgcG9yIGxhIHByZXNlbnRlIGxpY2VuY2lhIGRlIHVzby4KCkRlcmVjaG9zIGRlIGF1dG9yCgpMb3MgZGVyZWNob3MgZGUgYXV0b3Igc2UgZW5jdWVudHJhbiBwcm90ZWdpZG9zIHBvciBsYSBsZWdpc2xhY2nDs24gcGVydWFuYTogTGV5IHNvYnJlIGVsIERlcmVjaG8gZGUgQXV0b3IgcHJvbXVsZ2FkbyBlbiAxOTk2IChELkwuIE7CsCA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKweSAxODnCsCBkZWwgZGVjcmV0byBsZWdpc2xhdGl2byBOwrAgODIyLCBMZXkgc29icmUgRGVyZWNob3MgZGUgQXV0b3IgcHJvbXVsZ2FkYSBlbiAyMDA1IChMZXkgTsKwIDI4NTE3KSwgRGVjcmV0byBMZWdpc2xhdGl2byBxdWUgYXBydWViYSBsYSBtb2RpZmljYWNpw7NuIGRlbCBEZWNyZXRvIExlZ2lzbGF0aXZvIE7CsCA4MjIsIExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMjAwOCAoRC5MLiBOwrAgMTA3NikuCg== |
| score |
13.903862 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).