Comparación de los métodos regresión multivariada adaptativa utilizando splines (MARS) y redes neuronales artificiales backpropagation (RNAB) para el pronóstico de lluvias y temperaturas en la Cuenca del río Mantaro

Descripción del Articulo

Muchas actividades agrícolas dependen significativamente de la precipitación y la temperatura, afectando la producción y productividad de los cultivos. La cuenca del río Mantaro, (Junín-Perú), está expuesta a una alta variabilidad climática debido a su ubicación y características geográficas. Además...

Descripción completa

Detalles Bibliográficos
Autor: Latínez Sotomayor, Karen Alexandra
Formato: tesis de grado
Fecha de Publicación:2009
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/9
Enlace del recurso:http://hdl.handle.net/20.500.12816/9
Nivel de acceso:acceso abierto
Materia:Redes neuronales
Pronóstico
Precipitación
Temperatura
Huancayo
http://purl.org/pe-repo/ocde/ford#1.05.09
Descripción
Sumario:Muchas actividades agrícolas dependen significativamente de la precipitación y la temperatura, afectando la producción y productividad de los cultivos. La cuenca del río Mantaro, (Junín-Perú), está expuesta a una alta variabilidad climática debido a su ubicación y características geográficas. Además, son escasos los trabajos de investigación sobre la elaboración y utilización de pronósticos climáticos para aprovecharlos en la agricultura, por ello esta investigación se plantea ampliar el conocimeinto al respecto. Se utilizaron datos de las estaciones de Huayao, Santa Ana, Jaula y Viques, y una vez que estos datos fueron revisados y se eliminaron los valores atípicos extremos se procedió a su análisis con las técnicas: Regresión Multivariada Adaptativa utilizando Splines (MARS) y las Redes Neuronales Artificiales Backpropagation (RNAB). Las redes neuronales utilizada para el análisis consta de 17 nodos en el caso de las precipitaciones y 15 para las temperaturas tanto mínimas como máximas. Las variables explicativas que se utilizaron en este estudio son variables globales provenientes de información secundaria, siendo recomendable que para próximos estudios se revise la calidad de esas variables. Los inputs utilizados tienen un desfase de tres meses (lag=3). Los resultados mostraron que los pronósticos obtenidos al utilizar el modelo MARS tienen menor error que los obtenidos con las RNAB, a excepción de la variable Temperatura Máxima de Huayao en donde la RNAB resultó con menos errores que el modelo MARS.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).