Exportación Completada — 

Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance

Descripción del Articulo

The growing volume of data and its increasing complexity require even more efficient and faster information retrieval techniques. Approximate nearest neighbor search algorithms based on hashing were proposed to query high-dimensional datasets due to its high retrieval speed and low storage cost. Rec...

Descripción completa

Detalles Bibliográficos
Autores: Ocsa, Alexander, Huillca, Jose Luis, Coronado, Ricardo, Quispe, Oscar, Arbieto, Carlos, Lopez, Cristian
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1273
Enlace del recurso:https://hdl.handle.net/20.500.12390/1273
https://doi.org/10.1109/la-cci.2017.8285730
Nivel de acceso:acceso abierto
Materia:feedforward neural nets
convolution
data structures
https://purl.org/pe-repo/ocde/ford#5.08.02
id CONC_a954f7ab2a38e4e28b4fe4cd16482a4e
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1273
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance
title Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance
spellingShingle Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance
Ocsa, Alexander
feedforward neural nets
convolution
data structures
https://purl.org/pe-repo/ocde/ford#5.08.02
title_short Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance
title_full Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance
title_fullStr Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance
title_full_unstemmed Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance
title_sort Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance
author Ocsa, Alexander
author_facet Ocsa, Alexander
Huillca, Jose Luis
Coronado, Ricardo
Quispe, Oscar
Arbieto, Carlos
Lopez, Cristian
author_role author
author2 Huillca, Jose Luis
Coronado, Ricardo
Quispe, Oscar
Arbieto, Carlos
Lopez, Cristian
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Ocsa, Alexander
Huillca, Jose Luis
Coronado, Ricardo
Quispe, Oscar
Arbieto, Carlos
Lopez, Cristian
dc.subject.none.fl_str_mv feedforward neural nets
topic feedforward neural nets
convolution
data structures
https://purl.org/pe-repo/ocde/ford#5.08.02
dc.subject.es_PE.fl_str_mv convolution
data structures
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.08.02
description The growing volume of data and its increasing complexity require even more efficient and faster information retrieval techniques. Approximate nearest neighbor search algorithms based on hashing were proposed to query high-dimensional datasets due to its high retrieval speed and low storage cost. Recent studies promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1273
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/la-cci.2017.8285730
url https://hdl.handle.net/20.500.12390/1273
https://doi.org/10.1109/la-cci.2017.8285730
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175422285185024
spelling Publicationrp03688600rp03692600rp03687600rp03689600rp03690600rp03691600Ocsa, AlexanderHuillca, Jose LuisCoronado, RicardoQuispe, OscarArbieto, CarlosLopez, Cristian2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017-11https://hdl.handle.net/20.500.12390/1273https://doi.org/10.1109/la-cci.2017.8285730The growing volume of data and its increasing complexity require even more efficient and faster information retrieval techniques. Approximate nearest neighbor search algorithms based on hashing were proposed to query high-dimensional datasets due to its high retrieval speed and low storage cost. Recent studies promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEE2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)info:eu-repo/semantics/openAccessfeedforward neural netsconvolution-1data structures-1https://purl.org/pe-repo/ocde/ford#5.08.02-1Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performanceinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1273oai:repositorio.concytec.gob.pe:20.500.12390/12732024-05-30 15:51:49.798http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="12080f15-9c00-4f00-ab1d-4cab4f69aed0"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance</Title> <PublishedIn> <Publication> <Title>2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)</Title> </Publication> </PublishedIn> <PublicationDate>2017-11</PublicationDate> <DOI>https://doi.org/10.1109/la-cci.2017.8285730</DOI> <Authors> <Author> <DisplayName>Ocsa, Alexander</DisplayName> <Person id="rp03688" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Huillca, Jose Luis</DisplayName> <Person id="rp03692" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coronado, Ricardo</DisplayName> <Person id="rp03687" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Quispe, Oscar</DisplayName> <Person id="rp03689" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arbieto, Carlos</DisplayName> <Person id="rp03690" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lopez, Cristian</DisplayName> <Person id="rp03691" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>feedforward neural nets</Keyword> <Keyword>convolution</Keyword> <Keyword>data structures</Keyword> <Abstract>The growing volume of data and its increasing complexity require even more efficient and faster information retrieval techniques. Approximate nearest neighbor search algorithms based on hashing were proposed to query high-dimensional datasets due to its high retrieval speed and low storage cost. Recent studies promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).