A hybrid high-order formulation for a Neumann problem on polytopal meshes

Descripción del Articulo

In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of...

Descripción completa

Detalles Bibliográficos
Autores: Bustinza, Rommel, Munguia-La-Cotera, Jonathan
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2871
Enlace del recurso:https://hdl.handle.net/20.500.12390/2871
https://doi.org/10.1002/num.22439
Nivel de acceso:acceso abierto
Materia:Numerical Analysis
Applied Mathematics
Computational Mathematics
Analysis
http://purl.org/pe-repo/ocde/ford#1.01.02
id CONC_9b1071d3b28cf353a8a3212f5c4bd81b
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2871
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp07969600rp07968600Bustinza, RommelMunguia-La-Cotera, Jonathan2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2871https://doi.org/10.1002/num.22439In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of a local (element-wise) potential reconstruction operator and a local stabilization term, that weakly enforces the matching between local element- and face-based on degrees of freedom, and (c) cheap computational cost, thanks to static condensation and compact stencil. We prove the well-posedness of our HHO formulation, and obtain the optimal error estimates, according to previous study. Implementation aspects are thoroughly discussed. Finally, some numerical examples are provided, which are in agreement with our theoretical results.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengWileyNUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONSinfo:eu-repo/semantics/openAccessNumerical AnalysisApplied Mathematics-1Computational Mathematics-1Analysis-1http://purl.org/pe-repo/ocde/ford#1.01.02-1A hybrid high-order formulation for a Neumann problem on polytopal meshesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2871oai:repositorio.concytec.gob.pe:20.500.12390/28712024-05-30 15:25:52.989http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b9c3a4e9-e8bc-4347-8531-923fc3e08e55"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A hybrid high-order formulation for a Neumann problem on polytopal meshes</Title> <PublishedIn> <Publication> <Title>NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1002/num.22439</DOI> <Authors> <Author> <DisplayName>Bustinza, Rommel</DisplayName> <Person id="rp07969" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Munguia-La-Cotera, Jonathan</DisplayName> <Person id="rp07968" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Wiley</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Numerical Analysis</Keyword> <Keyword>Applied Mathematics</Keyword> <Keyword>Computational Mathematics</Keyword> <Keyword>Analysis</Keyword> <Abstract>In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of a local (element-wise) potential reconstruction operator and a local stabilization term, that weakly enforces the matching between local element- and face-based on degrees of freedom, and (c) cheap computational cost, thanks to static condensation and compact stencil. We prove the well-posedness of our HHO formulation, and obtain the optimal error estimates, according to previous study. Implementation aspects are thoroughly discussed. Finally, some numerical examples are provided, which are in agreement with our theoretical results.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv A hybrid high-order formulation for a Neumann problem on polytopal meshes
title A hybrid high-order formulation for a Neumann problem on polytopal meshes
spellingShingle A hybrid high-order formulation for a Neumann problem on polytopal meshes
Bustinza, Rommel
Numerical Analysis
Applied Mathematics
Computational Mathematics
Analysis
http://purl.org/pe-repo/ocde/ford#1.01.02
title_short A hybrid high-order formulation for a Neumann problem on polytopal meshes
title_full A hybrid high-order formulation for a Neumann problem on polytopal meshes
title_fullStr A hybrid high-order formulation for a Neumann problem on polytopal meshes
title_full_unstemmed A hybrid high-order formulation for a Neumann problem on polytopal meshes
title_sort A hybrid high-order formulation for a Neumann problem on polytopal meshes
author Bustinza, Rommel
author_facet Bustinza, Rommel
Munguia-La-Cotera, Jonathan
author_role author
author2 Munguia-La-Cotera, Jonathan
author2_role author
dc.contributor.author.fl_str_mv Bustinza, Rommel
Munguia-La-Cotera, Jonathan
dc.subject.none.fl_str_mv Numerical Analysis
topic Numerical Analysis
Applied Mathematics
Computational Mathematics
Analysis
http://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.es_PE.fl_str_mv Applied Mathematics
Computational Mathematics
Analysis
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.02
description In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of a local (element-wise) potential reconstruction operator and a local stabilization term, that weakly enforces the matching between local element- and face-based on degrees of freedom, and (c) cheap computational cost, thanks to static condensation and compact stencil. We prove the well-posedness of our HHO formulation, and obtain the optimal error estimates, according to previous study. Implementation aspects are thoroughly discussed. Finally, some numerical examples are provided, which are in agreement with our theoretical results.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2871
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/num.22439
url https://hdl.handle.net/20.500.12390/2871
https://doi.org/10.1002/num.22439
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175722899341312
score 13.263243
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).