A hybrid high-order formulation for a Neumann problem on polytopal meshes
Descripción del Articulo
In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2871 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2871 https://doi.org/10.1002/num.22439 |
Nivel de acceso: | acceso abierto |
Materia: | Numerical Analysis Applied Mathematics Computational Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.02 |
id |
CONC_9b1071d3b28cf353a8a3212f5c4bd81b |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2871 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp07969600rp07968600Bustinza, RommelMunguia-La-Cotera, Jonathan2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2871https://doi.org/10.1002/num.22439In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of a local (element-wise) potential reconstruction operator and a local stabilization term, that weakly enforces the matching between local element- and face-based on degrees of freedom, and (c) cheap computational cost, thanks to static condensation and compact stencil. We prove the well-posedness of our HHO formulation, and obtain the optimal error estimates, according to previous study. Implementation aspects are thoroughly discussed. Finally, some numerical examples are provided, which are in agreement with our theoretical results.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengWileyNUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONSinfo:eu-repo/semantics/openAccessNumerical AnalysisApplied Mathematics-1Computational Mathematics-1Analysis-1http://purl.org/pe-repo/ocde/ford#1.01.02-1A hybrid high-order formulation for a Neumann problem on polytopal meshesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2871oai:repositorio.concytec.gob.pe:20.500.12390/28712024-05-30 15:25:52.989http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b9c3a4e9-e8bc-4347-8531-923fc3e08e55"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A hybrid high-order formulation for a Neumann problem on polytopal meshes</Title> <PublishedIn> <Publication> <Title>NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1002/num.22439</DOI> <Authors> <Author> <DisplayName>Bustinza, Rommel</DisplayName> <Person id="rp07969" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Munguia-La-Cotera, Jonathan</DisplayName> <Person id="rp07968" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Wiley</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Numerical Analysis</Keyword> <Keyword>Applied Mathematics</Keyword> <Keyword>Computational Mathematics</Keyword> <Keyword>Analysis</Keyword> <Abstract>In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of a local (element-wise) potential reconstruction operator and a local stabilization term, that weakly enforces the matching between local element- and face-based on degrees of freedom, and (c) cheap computational cost, thanks to static condensation and compact stencil. We prove the well-posedness of our HHO formulation, and obtain the optimal error estimates, according to previous study. Implementation aspects are thoroughly discussed. Finally, some numerical examples are provided, which are in agreement with our theoretical results.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
A hybrid high-order formulation for a Neumann problem on polytopal meshes |
title |
A hybrid high-order formulation for a Neumann problem on polytopal meshes |
spellingShingle |
A hybrid high-order formulation for a Neumann problem on polytopal meshes Bustinza, Rommel Numerical Analysis Applied Mathematics Computational Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.02 |
title_short |
A hybrid high-order formulation for a Neumann problem on polytopal meshes |
title_full |
A hybrid high-order formulation for a Neumann problem on polytopal meshes |
title_fullStr |
A hybrid high-order formulation for a Neumann problem on polytopal meshes |
title_full_unstemmed |
A hybrid high-order formulation for a Neumann problem on polytopal meshes |
title_sort |
A hybrid high-order formulation for a Neumann problem on polytopal meshes |
author |
Bustinza, Rommel |
author_facet |
Bustinza, Rommel Munguia-La-Cotera, Jonathan |
author_role |
author |
author2 |
Munguia-La-Cotera, Jonathan |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bustinza, Rommel Munguia-La-Cotera, Jonathan |
dc.subject.none.fl_str_mv |
Numerical Analysis |
topic |
Numerical Analysis Applied Mathematics Computational Mathematics Analysis http://purl.org/pe-repo/ocde/ford#1.01.02 |
dc.subject.es_PE.fl_str_mv |
Applied Mathematics Computational Mathematics Analysis |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.02 |
description |
In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of a local (element-wise) potential reconstruction operator and a local stabilization term, that weakly enforces the matching between local element- and face-based on degrees of freedom, and (c) cheap computational cost, thanks to static condensation and compact stencil. We prove the well-posedness of our HHO formulation, and obtain the optimal error estimates, according to previous study. Implementation aspects are thoroughly discussed. Finally, some numerical examples are provided, which are in agreement with our theoretical results. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2871 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1002/num.22439 |
url |
https://hdl.handle.net/20.500.12390/2871 https://doi.org/10.1002/num.22439 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175722899341312 |
score |
13.263243 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).