A hybrid high-order formulation for a Neumann problem on polytopal meshes

Descripción del Articulo

In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of...

Descripción completa

Detalles Bibliográficos
Autores: Bustinza, Rommel, Munguia-La-Cotera, Jonathan
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2871
Enlace del recurso:https://hdl.handle.net/20.500.12390/2871
https://doi.org/10.1002/num.22439
Nivel de acceso:acceso abierto
Materia:Numerical Analysis
Applied Mathematics
Computational Mathematics
Analysis
http://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:In this work, we study a hybrid high-order (HHO) method for an elliptic diffusion problem with Neumann boundary condition. The proposed method has several features, such as: (a) the support of arbitrary approximation order polynomial at mesh elements and faces on polytopal meshes, (b) the design of a local (element-wise) potential reconstruction operator and a local stabilization term, that weakly enforces the matching between local element- and face-based on degrees of freedom, and (c) cheap computational cost, thanks to static condensation and compact stencil. We prove the well-posedness of our HHO formulation, and obtain the optimal error estimates, according to previous study. Implementation aspects are thoroughly discussed. Finally, some numerical examples are provided, which are in agreement with our theoretical results.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).