A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree
Descripción del Articulo
The authors would like to thank CONCYTEC (Consejo Nacional de Ciencia, Tecnología e Innovacíón Tecnológica), FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico) and UNSA (Universidad Nacional SanAgustín) of Perú.
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2018 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/528 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/528 https://doi.org/10.1145/3177457.3177466 |
| Nivel de acceso: | acceso abierto |
| Materia: | Visualization Data visualization Forestry Time series Dimension reduction techniques Exploratory analysis High-dimensional Interaction mechanisms Neighbor joining Similarity measure Visual analytics Visual techniques Time series analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
CONC_11e7eeb361711236e299452f95354ef2 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/528 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree |
| title |
A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree |
| spellingShingle |
A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree Rodríguez R. Visualization Data visualization Forestry Time series Dimension reduction techniques Exploratory analysis High-dimensional Interaction mechanisms Neighbor joining Similarity measure Visual analytics Visual techniques Time series analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree |
| title_full |
A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree |
| title_fullStr |
A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree |
| title_full_unstemmed |
A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree |
| title_sort |
A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree |
| author |
Rodríguez R. |
| author_facet |
Rodríguez R. Alfonte R. Cuadros A.M. |
| author_role |
author |
| author2 |
Alfonte R. Cuadros A.M. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Rodríguez R. Alfonte R. Cuadros A.M. |
| dc.subject.none.fl_str_mv |
Visualization |
| topic |
Visualization Data visualization Forestry Time series Dimension reduction techniques Exploratory analysis High-dimensional Interaction mechanisms Neighbor joining Similarity measure Visual analytics Visual techniques Time series analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.es_PE.fl_str_mv |
Data visualization Forestry Time series Dimension reduction techniques Exploratory analysis High-dimensional Interaction mechanisms Neighbor joining Similarity measure Visual analytics Visual techniques Time series analysis |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
The authors would like to thank CONCYTEC (Consejo Nacional de Ciencia, Tecnología e Innovacíón Tecnológica), FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico) and UNSA (Universidad Nacional SanAgustín) of Perú. |
| publishDate |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2018 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.isbn.none.fl_str_mv |
9781450363396 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/528 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1145/3177457.3177466 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85049863164 |
| identifier_str_mv |
9781450363396 2-s2.0-85049863164 |
| url |
https://hdl.handle.net/20.500.12390/528 https://doi.org/10.1145/3177457.3177466 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
ACM International Conference Proceeding Series |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Association for Computing Machinery |
| publisher.none.fl_str_mv |
Association for Computing Machinery |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883110701826048 |
| spelling |
Publicationrp00879600rp00881600rp00880600Rodríguez R.Alfonte R.Cuadros A.M.2024-05-30T23:13:38Z2024-05-30T23:13:38Z20189781450363396https://hdl.handle.net/20.500.12390/528https://doi.org/10.1145/3177457.31774662-s2.0-85049863164The authors would like to thank CONCYTEC (Consejo Nacional de Ciencia, Tecnología e Innovacíón Tecnológica), FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico) and UNSA (Universidad Nacional SanAgustín) of Perú.High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two well-known similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAssociation for Computing MachineryACM International Conference Proceeding Seriesinfo:eu-repo/semantics/openAccessVisualizationData visualization-1Forestry-1Time series-1Dimension reduction techniques-1Exploratory analysis-1High-dimensional-1Interaction mechanisms-1Neighbor joining-1Similarity measure-1Visual analytics-1Visual techniques-1Time series analysis-1https://purl.org/pe-repo/ocde/ford#2.02.04-1A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Treeinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/528oai:repositorio.concytec.gob.pe:20.500.12390/5282024-05-30 15:35:39.255http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="61512c2c-14f4-4336-8b2a-e0f79cf0827e"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A visual analytics approach for exploration of high-dimensional time series based on Neighbor-Joining Tree</Title> <PublishedIn> <Publication> <Title>ACM International Conference Proceeding Series</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1145/3177457.3177466</DOI> <SCP-Number>2-s2.0-85049863164</SCP-Number> <ISBN>9781450363396</ISBN> <Authors> <Author> <DisplayName>Rodríguez R.</DisplayName> <Person id="rp00879" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Alfonte R.</DisplayName> <Person id="rp00881" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cuadros A.M.</DisplayName> <Person id="rp00880" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Association for Computing Machinery</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Visualization</Keyword> <Keyword>Data visualization</Keyword> <Keyword>Forestry</Keyword> <Keyword>Time series</Keyword> <Keyword>Dimension reduction techniques</Keyword> <Keyword>Exploratory analysis</Keyword> <Keyword>High-dimensional</Keyword> <Keyword>Interaction mechanisms</Keyword> <Keyword>Neighbor joining</Keyword> <Keyword>Similarity measure</Keyword> <Keyword>Visual analytics</Keyword> <Keyword>Visual techniques</Keyword> <Keyword>Time series analysis</Keyword> <Abstract>High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two well-known similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.394457 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).