Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis

Descripción del Articulo

We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the U...

Descripción completa

Detalles Bibliográficos
Autores: Díaz, Félix, Sánchez, Luis, Liza, Rafael, Toribio, Jessica, Cerna, Nhell
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/3473
Enlace del recurso:https://hdl.handle.net/20.500.13067/3473
https://doi.org/10.18687/LACCEI2024.1.1.1018
Nivel de acceso:acceso abierto
Materia:Machine Learning
Nuclear Tracks
Bibliometric
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_cc781948b6e493375f16d77d53d72c4e
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/3473
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Díaz, FélixSánchez, LuisLiza, RafaelToribio, JessicaCerna, Nhell2024-11-13T04:03:20Z2024-11-13T04:03:20Z2023https://hdl.handle.net/20.500.13067/347322nd LACCEI International Multi-Conference for Engineering, Education, and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1018We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods.application/pdfengLACCEIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA19reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAMachine LearningNuclear TracksBibliometrichttps://purl.org/pe-repo/ocde/ford#2.02.04Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysisinfo:eu-repo/semantics/articleORIGINAL70.pdf70.pdfArtículoapplication/pdf776408http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/1/70.pdfe3584f208c8e5e548e93767701334df6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT70.pdf.txt70.pdf.txtExtracted texttext/plain46926http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/3/70.pdf.txt8b4b8a5d71a3071f4754572bec291bf6MD53THUMBNAIL70.pdf.jpg70.pdf.jpgGenerated Thumbnailimage/jpeg8494http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/4/70.pdf.jpg3367aa9e0f6fbd95df98bd962d59059aMD5420.500.13067/3473oai:repositorio.autonoma.edu.pe:20.500.13067/34732025-01-06 16:48:05.733Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
title Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
spellingShingle Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
Díaz, Félix
Machine Learning
Nuclear Tracks
Bibliometric
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
title_full Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
title_fullStr Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
title_full_unstemmed Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
title_sort Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
author Díaz, Félix
author_facet Díaz, Félix
Sánchez, Luis
Liza, Rafael
Toribio, Jessica
Cerna, Nhell
author_role author
author2 Sánchez, Luis
Liza, Rafael
Toribio, Jessica
Cerna, Nhell
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Díaz, Félix
Sánchez, Luis
Liza, Rafael
Toribio, Jessica
Cerna, Nhell
dc.subject.es_PE.fl_str_mv Machine Learning
Nuclear Tracks
Bibliometric
topic Machine Learning
Nuclear Tracks
Bibliometric
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-11-13T04:03:20Z
dc.date.available.none.fl_str_mv 2024-11-13T04:03:20Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/3473
dc.identifier.journal.es_PE.fl_str_mv 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.18687/LACCEI2024.1.1.1018
url https://hdl.handle.net/20.500.13067/3473
https://doi.org/10.18687/LACCEI2024.1.1.1018
identifier_str_mv 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv LACCEI
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 9
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/1/70.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/3/70.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/4/70.pdf.jpg
bitstream.checksum.fl_str_mv e3584f208c8e5e548e93767701334df6
9243398ff393db1861c890baeaeee5f9
8b4b8a5d71a3071f4754572bec291bf6
3367aa9e0f6fbd95df98bd962d59059a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915428157718528
score 13.894945
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).