Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis
Descripción del Articulo
We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the U...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/3473 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/3473 https://doi.org/10.18687/LACCEI2024.1.1.1018 |
Nivel de acceso: | acceso abierto |
Materia: | Machine Learning Nuclear Tracks Bibliometric https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_cc781948b6e493375f16d77d53d72c4e |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/3473 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Díaz, FélixSánchez, LuisLiza, RafaelToribio, JessicaCerna, Nhell2024-11-13T04:03:20Z2024-11-13T04:03:20Z2023https://hdl.handle.net/20.500.13067/347322nd LACCEI International Multi-Conference for Engineering, Education, and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1018We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods.application/pdfengLACCEIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA19reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAMachine LearningNuclear TracksBibliometrichttps://purl.org/pe-repo/ocde/ford#2.02.04Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysisinfo:eu-repo/semantics/articleORIGINAL70.pdf70.pdfArtículoapplication/pdf776408http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/1/70.pdfe3584f208c8e5e548e93767701334df6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT70.pdf.txt70.pdf.txtExtracted texttext/plain46926http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/3/70.pdf.txt8b4b8a5d71a3071f4754572bec291bf6MD53THUMBNAIL70.pdf.jpg70.pdf.jpgGenerated Thumbnailimage/jpeg8494http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/4/70.pdf.jpg3367aa9e0f6fbd95df98bd962d59059aMD5420.500.13067/3473oai:repositorio.autonoma.edu.pe:20.500.13067/34732025-01-06 16:48:05.733Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis |
title |
Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis |
spellingShingle |
Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis Díaz, Félix Machine Learning Nuclear Tracks Bibliometric https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis |
title_full |
Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis |
title_fullStr |
Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis |
title_full_unstemmed |
Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis |
title_sort |
Advancements and Applications of Machine Learning in Detecting Radon Nuclear Tracks from 2001 to 2023: A Bibliometric Analysis |
author |
Díaz, Félix |
author_facet |
Díaz, Félix Sánchez, Luis Liza, Rafael Toribio, Jessica Cerna, Nhell |
author_role |
author |
author2 |
Sánchez, Luis Liza, Rafael Toribio, Jessica Cerna, Nhell |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Díaz, Félix Sánchez, Luis Liza, Rafael Toribio, Jessica Cerna, Nhell |
dc.subject.es_PE.fl_str_mv |
Machine Learning Nuclear Tracks Bibliometric |
topic |
Machine Learning Nuclear Tracks Bibliometric https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-11-13T04:03:20Z |
dc.date.available.none.fl_str_mv |
2024-11-13T04:03:20Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/3473 |
dc.identifier.journal.es_PE.fl_str_mv |
22nd LACCEI International Multi-Conference for Engineering, Education, and Technology |
dc.identifier.doi.es_PE.fl_str_mv |
https://doi.org/10.18687/LACCEI2024.1.1.1018 |
url |
https://hdl.handle.net/20.500.13067/3473 https://doi.org/10.18687/LACCEI2024.1.1.1018 |
identifier_str_mv |
22nd LACCEI International Multi-Conference for Engineering, Education, and Technology |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
LACCEI |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.beginpage.es_PE.fl_str_mv |
1 |
dc.source.endpage.es_PE.fl_str_mv |
9 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/1/70.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/3/70.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3473/4/70.pdf.jpg |
bitstream.checksum.fl_str_mv |
e3584f208c8e5e548e93767701334df6 9243398ff393db1861c890baeaeee5f9 8b4b8a5d71a3071f4754572bec291bf6 3367aa9e0f6fbd95df98bd962d59059a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915428157718528 |
score |
13.894945 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).