A comparison of machine learning techniques for detection of phishing websites

Descripción del Articulo

Phishing is the theft of personal data through fake websites. Victims of this type of theft are directed to a fake website, where they are asked to enter their data to validate their identity. At that moment, theft is carried out, since entered data are stored and used by the hacker responsible for...

Descripción completa

Detalles Bibliográficos
Autor: Moncada Vargas, Andrés Eduardo
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/4886
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4886
Nivel de acceso:acceso abierto
Materia:Anti-Phishing
Machine Learning
Cibersecurity
Phishing Warning
Phishing
Ciberattack
Ciberseguridad
Advertencia Phishing
Ciberataque
Descripción
Sumario:Phishing is the theft of personal data through fake websites. Victims of this type of theft are directed to a fake website, where they are asked to enter their data to validate their identity. At that moment, theft is carried out, since entered data are stored and used by the hacker responsible for said attack to sell them or enter to websites and perform a fraud or scam. In order to conduct this work, we researched different methods for detecting phishing websites by using machine learning techniques. Thus, the purpose of this work is to compare machine learning techniques that have demonstrated to be the most effective methods to detect phishing websites. The results show that decision tree classifiers such as Decision Tree and Random Forest have achieved the highest accuracy and efficacy rates, with values between 97% and 99%, in detecting these types of websites.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).