Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes

Descripción del Articulo

Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML model...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Espinola-Linares, Karina, Ornella Flores Castañeda, Rosalynn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2878
Enlace del recurso:https://hdl.handle.net/20.500.13067/2878
https://doi.org/10.3390/diagnostics13142383
Nivel de acceso:acceso abierto
Materia:Diabetes
Machine learning
Classification
Modeling
Analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_b70f51f0b05276681df6f40613ef0ff4
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2878
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Iparraguirre-Villanueva, OrlandoEspinola-Linares, KarinaOrnella Flores Castañeda, RosalynnCabanillas-Carbonell, Michael2023-12-20T16:36:37Z2023-12-20T16:36:37Z2023https://hdl.handle.net/20.500.13067/2878Diagnosticshttps://doi.org/10.3390/diagnostics13142383Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.application/pdfengMDPIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/DiabetesMachine learningClassificationModelingAnalysishttps://purl.org/pe-repo/ocde/ford#2.02.04Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetesinfo:eu-repo/semantics/article1314116reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL45_2023.pdf45_2023.pdfArtículoapplication/pdf3181728http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/1/45_2023.pdfe86dc57d02b18ce4868a623f35cd1417MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT45_2023.pdf.txt45_2023.pdf.txtExtracted texttext/plain65038http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/3/45_2023.pdf.txt29f244577ab41c279b60d5690a8442b4MD53THUMBNAIL45_2023.pdf.jpg45_2023.pdf.jpgGenerated Thumbnailimage/jpeg7140http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/4/45_2023.pdf.jpg0e87c28451f718deb8d9aff30e3063b8MD5420.500.13067/2878oai:repositorio.autonoma.edu.pe:20.500.13067/28782023-12-21 03:00:37.183Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
title Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
spellingShingle Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
Iparraguirre-Villanueva, Orlando
Diabetes
Machine learning
Classification
Modeling
Analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
title_full Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
title_fullStr Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
title_full_unstemmed Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
title_sort Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Espinola-Linares, Karina
Ornella Flores Castañeda, Rosalynn
Cabanillas-Carbonell, Michael
author_role author
author2 Espinola-Linares, Karina
Ornella Flores Castañeda, Rosalynn
Cabanillas-Carbonell, Michael
author2_role author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Espinola-Linares, Karina
Ornella Flores Castañeda, Rosalynn
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Diabetes
Machine learning
Classification
Modeling
Analysis
topic Diabetes
Machine learning
Classification
Modeling
Analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-20T16:36:37Z
dc.date.available.none.fl_str_mv 2023-12-20T16:36:37Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2878
dc.identifier.journal.es_PE.fl_str_mv Diagnostics
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/diagnostics13142383
url https://hdl.handle.net/20.500.13067/2878
https://doi.org/10.3390/diagnostics13142383
identifier_str_mv Diagnostics
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 13
dc.source.issue.es_PE.fl_str_mv 14
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 16
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/1/45_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/3/45_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/4/45_2023.pdf.jpg
bitstream.checksum.fl_str_mv e86dc57d02b18ce4868a623f35cd1417
9243398ff393db1861c890baeaeee5f9
29f244577ab41c279b60d5690a8442b4
0e87c28451f718deb8d9aff30e3063b8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915421015867392
score 13.882472
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).