Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes
Descripción del Articulo
Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML model...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2878 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/2878 https://doi.org/10.3390/diagnostics13142383 |
Nivel de acceso: | acceso abierto |
Materia: | Diabetes Machine learning Classification Modeling Analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_b70f51f0b05276681df6f40613ef0ff4 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2878 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Iparraguirre-Villanueva, OrlandoEspinola-Linares, KarinaOrnella Flores Castañeda, RosalynnCabanillas-Carbonell, Michael2023-12-20T16:36:37Z2023-12-20T16:36:37Z2023https://hdl.handle.net/20.500.13067/2878Diagnosticshttps://doi.org/10.3390/diagnostics13142383Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising.application/pdfengMDPIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/DiabetesMachine learningClassificationModelingAnalysishttps://purl.org/pe-repo/ocde/ford#2.02.04Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetesinfo:eu-repo/semantics/article1314116reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL45_2023.pdf45_2023.pdfArtículoapplication/pdf3181728http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/1/45_2023.pdfe86dc57d02b18ce4868a623f35cd1417MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT45_2023.pdf.txt45_2023.pdf.txtExtracted texttext/plain65038http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/3/45_2023.pdf.txt29f244577ab41c279b60d5690a8442b4MD53THUMBNAIL45_2023.pdf.jpg45_2023.pdf.jpgGenerated Thumbnailimage/jpeg7140http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/4/45_2023.pdf.jpg0e87c28451f718deb8d9aff30e3063b8MD5420.500.13067/2878oai:repositorio.autonoma.edu.pe:20.500.13067/28782023-12-21 03:00:37.183Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes |
title |
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes |
spellingShingle |
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes Iparraguirre-Villanueva, Orlando Diabetes Machine learning Classification Modeling Analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes |
title_full |
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes |
title_fullStr |
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes |
title_full_unstemmed |
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes |
title_sort |
Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes |
author |
Iparraguirre-Villanueva, Orlando |
author_facet |
Iparraguirre-Villanueva, Orlando Espinola-Linares, Karina Ornella Flores Castañeda, Rosalynn Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Espinola-Linares, Karina Ornella Flores Castañeda, Rosalynn Cabanillas-Carbonell, Michael |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Espinola-Linares, Karina Ornella Flores Castañeda, Rosalynn Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
Diabetes Machine learning Classification Modeling Analysis |
topic |
Diabetes Machine learning Classification Modeling Analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Early detection of diabetes is essential to prevent serious complications in patients. The purpose of this work is to detect and classify type 2 diabetes in patients using machine learning (ML) models, and to select the most optimal model to predict the risk of diabetes. In this paper, five ML models, including K-nearest neighbor (K-NN), Bernoulli Naïve Bayes (BNB), decision tree (DT), logistic regression (LR), and support vector machine (SVM), are investigated to predict diabetic patients. A Kaggle-hosted Pima Indian dataset containing 768 patients with and without diabetes was used, including variables such as number of pregnancies the patient has had, blood glucose concentration, diastolic blood pressure, skinfold thickness, body insulin levels, body mass index (BMI), genetic background, diabetes in the family tree, age, and outcome (with/without diabetes). The results show that the K-NN and BNB models outperform the other models. The K-NN model obtained the best accuracy in detecting diabetes, with 79.6% accuracy, while the BNB model obtained 77.2% accuracy in detecting diabetes. Finally, it can be stated that the use of ML models for the early detection of diabetes is very promising. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-20T16:36:37Z |
dc.date.available.none.fl_str_mv |
2023-12-20T16:36:37Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2878 |
dc.identifier.journal.es_PE.fl_str_mv |
Diagnostics |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/diagnostics13142383 |
url |
https://hdl.handle.net/20.500.13067/2878 https://doi.org/10.3390/diagnostics13142383 |
identifier_str_mv |
Diagnostics |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
13 |
dc.source.issue.es_PE.fl_str_mv |
14 |
dc.source.beginpage.es_PE.fl_str_mv |
1 |
dc.source.endpage.es_PE.fl_str_mv |
16 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/1/45_2023.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/3/45_2023.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2878/4/45_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
e86dc57d02b18ce4868a623f35cd1417 9243398ff393db1861c890baeaeee5f9 29f244577ab41c279b60d5690a8442b4 0e87c28451f718deb8d9aff30e3063b8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915421015867392 |
score |
13.882472 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).