Influence of the introduction of electric vehicles on CO2 emissions in Peru
Descripción del Articulo
In Peru, as in many countries, road transport is dominated by vehicles with gasoline or diesel internal combustion engines, which represents a challenge for decarbonization in the world. In industrialized countries there is an interest in electric vehicles, with the aim of achieving their objectives...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/3482 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/3482 https://doi.org/10.18687/LACCEI2024.1.1.1626 |
Nivel de acceso: | acceso abierto |
Materia: | EV penetration rate Environmental impact Electric vehicles Neural networks ANN CO2 emissions https://purl.org/pe-repo/ocde/ford#2.07.00 |
id |
AUTO_9b473e9b231ccf68a0c4385abed2033b |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/3482 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Nazario Ticse, RussellRamos Saravia, JoséWong Kcom, JorgeQuintana Caceda, María2024-11-13T23:28:15Z2024-11-13T23:28:15Z2023https://hdl.handle.net/20.500.13067/348222nd LACCEI International Multi-Conference for Engineering, Education, and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1626In Peru, as in many countries, road transport is dominated by vehicles with gasoline or diesel internal combustion engines, which represents a challenge for decarbonization in the world. In industrialized countries there is an interest in electric vehicles, with the aim of achieving their objectives in emission reduction, to improve air quality and reduce greenhouse gas emissions. That is why the trend is to electrify the vehicle fleet, thereby reducing fossil fuel imports, thus progressively eliminating energy dependence. Lima has a serious pollution problem that is due to the transportation sector, both due to the emission of gasses, as well as noise, traffic and a poor transportation system. For this reason, it is important to evaluate the environmental impact produced by electric vehicles at different penetration rates in the private sector transport fleet. In this work, an econometric model is used and the use of neural networks, the dependent variable is the CO2 emissions in Peru. Different scenarios have been created, each with different penetration rates. As a result, in the reduction of CO2 emissions, for light vehicles (cars), by 2030 in all scenarios, a reduction in emissions of 0.48% has been demonstrated for the global rate, 2.82% for an AAP scenario, 5.73% for a NGV scenario and a reduction of 20.99% for the very optimistic EV30@30 scenario. With the result, it is observed that the massification of EVs will be essential to reduce GHG emissions.application/pdfengLACCEIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA110reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAEV penetration rateEnvironmental impactElectric vehiclesNeural networks ANNCO2 emissionshttps://purl.org/pe-repo/ocde/ford#2.07.00Influence of the introduction of electric vehicles on CO2 emissions in Peruinfo:eu-repo/semantics/articleORIGINAL79.pdf79.pdfArtículoapplication/pdf794169http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/1/79.pdfe152fd84266998de13dd1a4da61a0558MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT79.pdf.txt79.pdf.txtExtracted texttext/plain44178http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/3/79.pdf.txt826da57ead8e63fe4e8494ac7ce39fefMD53THUMBNAIL79.pdf.jpg79.pdf.jpgGenerated Thumbnailimage/jpeg8465http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/4/79.pdf.jpg650d6f57ce29c3497c079e88839163e4MD5420.500.13067/3482oai:repositorio.autonoma.edu.pe:20.500.13067/34822025-01-06 16:53:40.911Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Influence of the introduction of electric vehicles on CO2 emissions in Peru |
title |
Influence of the introduction of electric vehicles on CO2 emissions in Peru |
spellingShingle |
Influence of the introduction of electric vehicles on CO2 emissions in Peru Nazario Ticse, Russell EV penetration rate Environmental impact Electric vehicles Neural networks ANN CO2 emissions https://purl.org/pe-repo/ocde/ford#2.07.00 |
title_short |
Influence of the introduction of electric vehicles on CO2 emissions in Peru |
title_full |
Influence of the introduction of electric vehicles on CO2 emissions in Peru |
title_fullStr |
Influence of the introduction of electric vehicles on CO2 emissions in Peru |
title_full_unstemmed |
Influence of the introduction of electric vehicles on CO2 emissions in Peru |
title_sort |
Influence of the introduction of electric vehicles on CO2 emissions in Peru |
author |
Nazario Ticse, Russell |
author_facet |
Nazario Ticse, Russell Ramos Saravia, José Wong Kcom, Jorge Quintana Caceda, María |
author_role |
author |
author2 |
Ramos Saravia, José Wong Kcom, Jorge Quintana Caceda, María |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Nazario Ticse, Russell Ramos Saravia, José Wong Kcom, Jorge Quintana Caceda, María |
dc.subject.es_PE.fl_str_mv |
EV penetration rate Environmental impact Electric vehicles Neural networks ANN CO2 emissions |
topic |
EV penetration rate Environmental impact Electric vehicles Neural networks ANN CO2 emissions https://purl.org/pe-repo/ocde/ford#2.07.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.07.00 |
description |
In Peru, as in many countries, road transport is dominated by vehicles with gasoline or diesel internal combustion engines, which represents a challenge for decarbonization in the world. In industrialized countries there is an interest in electric vehicles, with the aim of achieving their objectives in emission reduction, to improve air quality and reduce greenhouse gas emissions. That is why the trend is to electrify the vehicle fleet, thereby reducing fossil fuel imports, thus progressively eliminating energy dependence. Lima has a serious pollution problem that is due to the transportation sector, both due to the emission of gasses, as well as noise, traffic and a poor transportation system. For this reason, it is important to evaluate the environmental impact produced by electric vehicles at different penetration rates in the private sector transport fleet. In this work, an econometric model is used and the use of neural networks, the dependent variable is the CO2 emissions in Peru. Different scenarios have been created, each with different penetration rates. As a result, in the reduction of CO2 emissions, for light vehicles (cars), by 2030 in all scenarios, a reduction in emissions of 0.48% has been demonstrated for the global rate, 2.82% for an AAP scenario, 5.73% for a NGV scenario and a reduction of 20.99% for the very optimistic EV30@30 scenario. With the result, it is observed that the massification of EVs will be essential to reduce GHG emissions. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-11-13T23:28:15Z |
dc.date.available.none.fl_str_mv |
2024-11-13T23:28:15Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/3482 |
dc.identifier.journal.es_PE.fl_str_mv |
22nd LACCEI International Multi-Conference for Engineering, Education, and Technology |
dc.identifier.doi.es_PE.fl_str_mv |
https://doi.org/10.18687/LACCEI2024.1.1.1626 |
url |
https://hdl.handle.net/20.500.13067/3482 https://doi.org/10.18687/LACCEI2024.1.1.1626 |
identifier_str_mv |
22nd LACCEI International Multi-Conference for Engineering, Education, and Technology |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
LACCEI |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.beginpage.es_PE.fl_str_mv |
1 |
dc.source.endpage.es_PE.fl_str_mv |
10 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/1/79.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/3/79.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/4/79.pdf.jpg |
bitstream.checksum.fl_str_mv |
e152fd84266998de13dd1a4da61a0558 9243398ff393db1861c890baeaeee5f9 826da57ead8e63fe4e8494ac7ce39fef 650d6f57ce29c3497c079e88839163e4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915408597581824 |
score |
13.882472 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).