Influence of the introduction of electric vehicles on CO2 emissions in Peru

Descripción del Articulo

In Peru, as in many countries, road transport is dominated by vehicles with gasoline or diesel internal combustion engines, which represents a challenge for decarbonization in the world. In industrialized countries there is an interest in electric vehicles, with the aim of achieving their objectives...

Descripción completa

Detalles Bibliográficos
Autores: Nazario Ticse, Russell, Ramos Saravia, José, Wong Kcom, Jorge, Quintana Caceda, María
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/3482
Enlace del recurso:https://hdl.handle.net/20.500.13067/3482
https://doi.org/10.18687/LACCEI2024.1.1.1626
Nivel de acceso:acceso abierto
Materia:EV penetration rate
Environmental impact
Electric vehicles
Neural networks ANN
CO2 emissions
https://purl.org/pe-repo/ocde/ford#2.07.00
id AUTO_9b473e9b231ccf68a0c4385abed2033b
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/3482
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nazario Ticse, RussellRamos Saravia, JoséWong Kcom, JorgeQuintana Caceda, María2024-11-13T23:28:15Z2024-11-13T23:28:15Z2023https://hdl.handle.net/20.500.13067/348222nd LACCEI International Multi-Conference for Engineering, Education, and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1626In Peru, as in many countries, road transport is dominated by vehicles with gasoline or diesel internal combustion engines, which represents a challenge for decarbonization in the world. In industrialized countries there is an interest in electric vehicles, with the aim of achieving their objectives in emission reduction, to improve air quality and reduce greenhouse gas emissions. That is why the trend is to electrify the vehicle fleet, thereby reducing fossil fuel imports, thus progressively eliminating energy dependence. Lima has a serious pollution problem that is due to the transportation sector, both due to the emission of gasses, as well as noise, traffic and a poor transportation system. For this reason, it is important to evaluate the environmental impact produced by electric vehicles at different penetration rates in the private sector transport fleet. In this work, an econometric model is used and the use of neural networks, the dependent variable is the CO2 emissions in Peru. Different scenarios have been created, each with different penetration rates. As a result, in the reduction of CO2 emissions, for light vehicles (cars), by 2030 in all scenarios, a reduction in emissions of 0.48% has been demonstrated for the global rate, 2.82% for an AAP scenario, 5.73% for a NGV scenario and a reduction of 20.99% for the very optimistic EV30@30 scenario. With the result, it is observed that the massification of EVs will be essential to reduce GHG emissions.application/pdfengLACCEIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA110reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAEV penetration rateEnvironmental impactElectric vehiclesNeural networks ANNCO2 emissionshttps://purl.org/pe-repo/ocde/ford#2.07.00Influence of the introduction of electric vehicles on CO2 emissions in Peruinfo:eu-repo/semantics/articleORIGINAL79.pdf79.pdfArtículoapplication/pdf794169http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/1/79.pdfe152fd84266998de13dd1a4da61a0558MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT79.pdf.txt79.pdf.txtExtracted texttext/plain44178http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/3/79.pdf.txt826da57ead8e63fe4e8494ac7ce39fefMD53THUMBNAIL79.pdf.jpg79.pdf.jpgGenerated Thumbnailimage/jpeg8465http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/4/79.pdf.jpg650d6f57ce29c3497c079e88839163e4MD5420.500.13067/3482oai:repositorio.autonoma.edu.pe:20.500.13067/34822025-01-06 16:53:40.911Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Influence of the introduction of electric vehicles on CO2 emissions in Peru
title Influence of the introduction of electric vehicles on CO2 emissions in Peru
spellingShingle Influence of the introduction of electric vehicles on CO2 emissions in Peru
Nazario Ticse, Russell
EV penetration rate
Environmental impact
Electric vehicles
Neural networks ANN
CO2 emissions
https://purl.org/pe-repo/ocde/ford#2.07.00
title_short Influence of the introduction of electric vehicles on CO2 emissions in Peru
title_full Influence of the introduction of electric vehicles on CO2 emissions in Peru
title_fullStr Influence of the introduction of electric vehicles on CO2 emissions in Peru
title_full_unstemmed Influence of the introduction of electric vehicles on CO2 emissions in Peru
title_sort Influence of the introduction of electric vehicles on CO2 emissions in Peru
author Nazario Ticse, Russell
author_facet Nazario Ticse, Russell
Ramos Saravia, José
Wong Kcom, Jorge
Quintana Caceda, María
author_role author
author2 Ramos Saravia, José
Wong Kcom, Jorge
Quintana Caceda, María
author2_role author
author
author
dc.contributor.author.fl_str_mv Nazario Ticse, Russell
Ramos Saravia, José
Wong Kcom, Jorge
Quintana Caceda, María
dc.subject.es_PE.fl_str_mv EV penetration rate
Environmental impact
Electric vehicles
Neural networks ANN
CO2 emissions
topic EV penetration rate
Environmental impact
Electric vehicles
Neural networks ANN
CO2 emissions
https://purl.org/pe-repo/ocde/ford#2.07.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.07.00
description In Peru, as in many countries, road transport is dominated by vehicles with gasoline or diesel internal combustion engines, which represents a challenge for decarbonization in the world. In industrialized countries there is an interest in electric vehicles, with the aim of achieving their objectives in emission reduction, to improve air quality and reduce greenhouse gas emissions. That is why the trend is to electrify the vehicle fleet, thereby reducing fossil fuel imports, thus progressively eliminating energy dependence. Lima has a serious pollution problem that is due to the transportation sector, both due to the emission of gasses, as well as noise, traffic and a poor transportation system. For this reason, it is important to evaluate the environmental impact produced by electric vehicles at different penetration rates in the private sector transport fleet. In this work, an econometric model is used and the use of neural networks, the dependent variable is the CO2 emissions in Peru. Different scenarios have been created, each with different penetration rates. As a result, in the reduction of CO2 emissions, for light vehicles (cars), by 2030 in all scenarios, a reduction in emissions of 0.48% has been demonstrated for the global rate, 2.82% for an AAP scenario, 5.73% for a NGV scenario and a reduction of 20.99% for the very optimistic EV30@30 scenario. With the result, it is observed that the massification of EVs will be essential to reduce GHG emissions.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-11-13T23:28:15Z
dc.date.available.none.fl_str_mv 2024-11-13T23:28:15Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/3482
dc.identifier.journal.es_PE.fl_str_mv 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.18687/LACCEI2024.1.1.1626
url https://hdl.handle.net/20.500.13067/3482
https://doi.org/10.18687/LACCEI2024.1.1.1626
identifier_str_mv 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv LACCEI
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 10
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/1/79.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/3/79.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3482/4/79.pdf.jpg
bitstream.checksum.fl_str_mv e152fd84266998de13dd1a4da61a0558
9243398ff393db1861c890baeaeee5f9
826da57ead8e63fe4e8494ac7ce39fef
650d6f57ce29c3497c079e88839163e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915408597581824
score 13.882472
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).