Search and classify topics in a corpus of text using the latent dirichlet allocation model

Descripción del Articulo

This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Sierra-Liñan, Fernando, Herrera Salazar, Jose Luis, Beltozar-Clemente, Saul, Pucuhuayla-Revatta, Félix, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2829
Enlace del recurso:https://hdl.handle.net/20.500.13067/2829
https://doi.org/10.11591/ijeecs.v30.i1.pp246-256
Nivel de acceso:acceso abierto
Materia:Classify
Discovering
Latent dirichlet allocation
Text corpus
Topics
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_74017a75fb384f1d6e4d6cdb83924b9f
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2829
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Iparraguirre-Villanueva, OrlandoSierra-Liñan, FernandoHerrera Salazar, Jose LuisBeltozar-Clemente, SaulPucuhuayla-Revatta, FélixZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-11-30T16:01:47Z2023-11-30T16:01:47Z2023https://hdl.handle.net/20.500.13067/2829https://doi.org/10.11591/ijeecs.v30.i1.pp246-256This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and fourth, evaluation of the model performance. For processing, a total of 10,322 "curriculum" documents related to data science were collected from the web during 2018-2022. The latent dirichlet allocation (LDA) model was used for the analysis and structure of the subjects. After processing, 12 themes were generated, which allowed ranking the most relevant terms to identify the skills of each of the candidates. This work concludes that candidates interested in data science must have skills in the following topics: first, they must be technical, they must have mastery of structured query language, mastery of programming languages such as R, Python, java, and data management, among other tools associated with the technology.application/pdfengIndonesian Journal of Electrical Engineering and Computer Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/ClassifyDiscoveringLatent dirichlet allocationText corpusTopicshttps://purl.org/pe-repo/ocde/ford#2.02.04Search and classify topics in a corpus of text using the latent dirichlet allocation modelinfo:eu-repo/semantics/article301246256reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMATEXT6_2023.pdf.txt6_2023.pdf.txtExtracted texttext/plain44833http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/3/6_2023.pdf.txt5ecebb7582100c3bbc167d7bc3d68902MD53THUMBNAIL6_2023.pdf.jpg6_2023.pdf.jpgGenerated Thumbnailimage/jpeg6489http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/4/6_2023.pdf.jpg2c669bddaa25d0d930f11722bdaed6baMD54ORIGINAL6_2023.pdf6_2023.pdfArtículoapplication/pdf646288http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/1/6_2023.pdf9612a19922a6b02e74c30e5467962abbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2829oai:repositorio.autonoma.edu.pe:20.500.13067/28292023-12-01 03:00:28.382Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Search and classify topics in a corpus of text using the latent dirichlet allocation model
title Search and classify topics in a corpus of text using the latent dirichlet allocation model
spellingShingle Search and classify topics in a corpus of text using the latent dirichlet allocation model
Iparraguirre-Villanueva, Orlando
Classify
Discovering
Latent dirichlet allocation
Text corpus
Topics
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Search and classify topics in a corpus of text using the latent dirichlet allocation model
title_full Search and classify topics in a corpus of text using the latent dirichlet allocation model
title_fullStr Search and classify topics in a corpus of text using the latent dirichlet allocation model
title_full_unstemmed Search and classify topics in a corpus of text using the latent dirichlet allocation model
title_sort Search and classify topics in a corpus of text using the latent dirichlet allocation model
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Sierra-Liñan, Fernando
Herrera Salazar, Jose Luis
Beltozar-Clemente, Saul
Pucuhuayla-Revatta, Félix
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Sierra-Liñan, Fernando
Herrera Salazar, Jose Luis
Beltozar-Clemente, Saul
Pucuhuayla-Revatta, Félix
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Sierra-Liñan, Fernando
Herrera Salazar, Jose Luis
Beltozar-Clemente, Saul
Pucuhuayla-Revatta, Félix
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Classify
Discovering
Latent dirichlet allocation
Text corpus
Topics
topic Classify
Discovering
Latent dirichlet allocation
Text corpus
Topics
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and fourth, evaluation of the model performance. For processing, a total of 10,322 "curriculum" documents related to data science were collected from the web during 2018-2022. The latent dirichlet allocation (LDA) model was used for the analysis and structure of the subjects. After processing, 12 themes were generated, which allowed ranking the most relevant terms to identify the skills of each of the candidates. This work concludes that candidates interested in data science must have skills in the following topics: first, they must be technical, they must have mastery of structured query language, mastery of programming languages such as R, Python, java, and data management, among other tools associated with the technology.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-30T16:01:47Z
dc.date.available.none.fl_str_mv 2023-11-30T16:01:47Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2829
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijeecs.v30.i1.pp246-256
url https://hdl.handle.net/20.500.13067/2829
https://doi.org/10.11591/ijeecs.v30.i1.pp246-256
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 30
dc.source.issue.es_PE.fl_str_mv 1
dc.source.beginpage.es_PE.fl_str_mv 246
dc.source.endpage.es_PE.fl_str_mv 256
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/3/6_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/4/6_2023.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/1/6_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/2/license.txt
bitstream.checksum.fl_str_mv 5ecebb7582100c3bbc167d7bc3d68902
2c669bddaa25d0d930f11722bdaed6ba
9612a19922a6b02e74c30e5467962abb
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915295486640128
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).