Search and classify topics in a corpus of text using the latent dirichlet allocation model
Descripción del Articulo
This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2829 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/2829 https://doi.org/10.11591/ijeecs.v30.i1.pp246-256 |
Nivel de acceso: | acceso abierto |
Materia: | Classify Discovering Latent dirichlet allocation Text corpus Topics https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_74017a75fb384f1d6e4d6cdb83924b9f |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2829 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Iparraguirre-Villanueva, OrlandoSierra-Liñan, FernandoHerrera Salazar, Jose LuisBeltozar-Clemente, SaulPucuhuayla-Revatta, FélixZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-11-30T16:01:47Z2023-11-30T16:01:47Z2023https://hdl.handle.net/20.500.13067/2829https://doi.org/10.11591/ijeecs.v30.i1.pp246-256This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and fourth, evaluation of the model performance. For processing, a total of 10,322 "curriculum" documents related to data science were collected from the web during 2018-2022. The latent dirichlet allocation (LDA) model was used for the analysis and structure of the subjects. After processing, 12 themes were generated, which allowed ranking the most relevant terms to identify the skills of each of the candidates. This work concludes that candidates interested in data science must have skills in the following topics: first, they must be technical, they must have mastery of structured query language, mastery of programming languages such as R, Python, java, and data management, among other tools associated with the technology.application/pdfengIndonesian Journal of Electrical Engineering and Computer Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/ClassifyDiscoveringLatent dirichlet allocationText corpusTopicshttps://purl.org/pe-repo/ocde/ford#2.02.04Search and classify topics in a corpus of text using the latent dirichlet allocation modelinfo:eu-repo/semantics/article301246256reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMATEXT6_2023.pdf.txt6_2023.pdf.txtExtracted texttext/plain44833http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/3/6_2023.pdf.txt5ecebb7582100c3bbc167d7bc3d68902MD53THUMBNAIL6_2023.pdf.jpg6_2023.pdf.jpgGenerated Thumbnailimage/jpeg6489http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/4/6_2023.pdf.jpg2c669bddaa25d0d930f11722bdaed6baMD54ORIGINAL6_2023.pdf6_2023.pdfArtículoapplication/pdf646288http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/1/6_2023.pdf9612a19922a6b02e74c30e5467962abbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2829oai:repositorio.autonoma.edu.pe:20.500.13067/28292023-12-01 03:00:28.382Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Search and classify topics in a corpus of text using the latent dirichlet allocation model |
title |
Search and classify topics in a corpus of text using the latent dirichlet allocation model |
spellingShingle |
Search and classify topics in a corpus of text using the latent dirichlet allocation model Iparraguirre-Villanueva, Orlando Classify Discovering Latent dirichlet allocation Text corpus Topics https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Search and classify topics in a corpus of text using the latent dirichlet allocation model |
title_full |
Search and classify topics in a corpus of text using the latent dirichlet allocation model |
title_fullStr |
Search and classify topics in a corpus of text using the latent dirichlet allocation model |
title_full_unstemmed |
Search and classify topics in a corpus of text using the latent dirichlet allocation model |
title_sort |
Search and classify topics in a corpus of text using the latent dirichlet allocation model |
author |
Iparraguirre-Villanueva, Orlando |
author_facet |
Iparraguirre-Villanueva, Orlando Sierra-Liñan, Fernando Herrera Salazar, Jose Luis Beltozar-Clemente, Saul Pucuhuayla-Revatta, Félix Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Sierra-Liñan, Fernando Herrera Salazar, Jose Luis Beltozar-Clemente, Saul Pucuhuayla-Revatta, Félix Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Sierra-Liñan, Fernando Herrera Salazar, Jose Luis Beltozar-Clemente, Saul Pucuhuayla-Revatta, Félix Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
Classify Discovering Latent dirichlet allocation Text corpus Topics |
topic |
Classify Discovering Latent dirichlet allocation Text corpus Topics https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and fourth, evaluation of the model performance. For processing, a total of 10,322 "curriculum" documents related to data science were collected from the web during 2018-2022. The latent dirichlet allocation (LDA) model was used for the analysis and structure of the subjects. After processing, 12 themes were generated, which allowed ranking the most relevant terms to identify the skills of each of the candidates. This work concludes that candidates interested in data science must have skills in the following topics: first, they must be technical, they must have mastery of structured query language, mastery of programming languages such as R, Python, java, and data management, among other tools associated with the technology. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-30T16:01:47Z |
dc.date.available.none.fl_str_mv |
2023-11-30T16:01:47Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2829 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/ijeecs.v30.i1.pp246-256 |
url |
https://hdl.handle.net/20.500.13067/2829 https://doi.org/10.11591/ijeecs.v30.i1.pp246-256 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
30 |
dc.source.issue.es_PE.fl_str_mv |
1 |
dc.source.beginpage.es_PE.fl_str_mv |
246 |
dc.source.endpage.es_PE.fl_str_mv |
256 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/3/6_2023.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/4/6_2023.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/1/6_2023.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2829/2/license.txt |
bitstream.checksum.fl_str_mv |
5ecebb7582100c3bbc167d7bc3d68902 2c669bddaa25d0d930f11722bdaed6ba 9612a19922a6b02e74c30e5467962abb 9243398ff393db1861c890baeaeee5f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915295486640128 |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).