The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model

Descripción del Articulo

Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Alvarez-Risco, Aldo, Herrera Salazar, Jose Luis, Beltozar-Clemente, Saul, Zapata-Paulini, Joselyn, Yáñez, Jaime A., Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2831
Enlace del recurso:https://hdl.handle.net/20.500.13067/2831
https://doi.org/10.3390/vaccines11020312
Nivel de acceso:acceso abierto
Materia:Monkeypox
Sentiment
Tweets
CNN
LSTM
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_4c5f10a3b0f75dbc544719e88433ab80
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2831
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Iparraguirre-Villanueva, OrlandoAlvarez-Risco, AldoHerrera Salazar, Jose LuisBeltozar-Clemente, SaulZapata-Paulini, JoselynYáñez, Jaime A.Cabanillas-Carbonell, Michael2023-11-30T20:58:08Z2023-11-30T20:58:08Z2023https://hdl.handle.net/20.500.13067/2831Vaccineshttps://doi.org/10.3390/vaccines11020312Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2022, the number of confirmed cases in Peru had reached 1964. Although most monkeypox patients have been discharged, we cannot neglect the monitoring of the population with respect to the monkeypox virus. Lately, the population has started to express their feelings and opinions through social media, specifically Twitter, as it is the most used social medium and is an ideal space to gather what people think about the monkeypox virus. The information imparted through this medium can be in different formats, such as text, videos, images, audio, etc. The objective of this work is to analyze the positive, negative, and neutral feelings of people who publish their opinions on Twitter with the hashtag #Monkeypox. To find out what people think about this disease, a hybrid-based model architecture built on CNN and LSTM was used to determine the prediction accuracy. The prediction result obtained from the total monkeypox data was 83% accurate. Other performance metrics were also used to evaluate the model, such as specificity, recall level, and F1 score, representing 99%, 85%, and 88%, respectively. The results also showed the polarity of feelings through the CNN-LSTM confusion matrix, where 45.42% of people expressed neither positive nor negative opinions, while 19.45% expressed negative and fearful feelings about this infectious disease. The results of this work contribute to raising public awareness about the monkeypox virus.application/pdfengMDPIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/MonkeypoxSentimentTweetsCNNLSTMhttps://purl.org/pe-repo/ocde/ford#2.02.04The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Modelinfo:eu-repo/semantics/articlehttps://www.mdpi.com/2076-393X/11/2/312112112reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMATEXT12_2023.pdf.txt12_2023.pdf.txtExtracted texttext/plain52357http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2831/3/12_2023.pdf.txtb6c83fdf0e2b1f544dfbacb555095c02MD53THUMBNAIL12_2023.pdf.jpg12_2023.pdf.jpgGenerated Thumbnailimage/jpeg7163http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2831/4/12_2023.pdf.jpg0895b324890dae9f27f1fd1a7c5e1caeMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2831/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINAL12_2023.pdf12_2023.pdfArtículoapplication/pdf2060192http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2831/1/12_2023.pdf79e7491fab347ba4a1a22dbac1658c88MD5120.500.13067/2831oai:repositorio.autonoma.edu.pe:20.500.13067/28312023-12-01 03:00:29.18Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
title The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
spellingShingle The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
Iparraguirre-Villanueva, Orlando
Monkeypox
Sentiment
Tweets
CNN
LSTM
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
title_full The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
title_fullStr The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
title_full_unstemmed The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
title_sort The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Alvarez-Risco, Aldo
Herrera Salazar, Jose Luis
Beltozar-Clemente, Saul
Zapata-Paulini, Joselyn
Yáñez, Jaime A.
Cabanillas-Carbonell, Michael
author_role author
author2 Alvarez-Risco, Aldo
Herrera Salazar, Jose Luis
Beltozar-Clemente, Saul
Zapata-Paulini, Joselyn
Yáñez, Jaime A.
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Alvarez-Risco, Aldo
Herrera Salazar, Jose Luis
Beltozar-Clemente, Saul
Zapata-Paulini, Joselyn
Yáñez, Jaime A.
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Monkeypox
Sentiment
Tweets
CNN
LSTM
topic Monkeypox
Sentiment
Tweets
CNN
LSTM
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2022, the number of confirmed cases in Peru had reached 1964. Although most monkeypox patients have been discharged, we cannot neglect the monitoring of the population with respect to the monkeypox virus. Lately, the population has started to express their feelings and opinions through social media, specifically Twitter, as it is the most used social medium and is an ideal space to gather what people think about the monkeypox virus. The information imparted through this medium can be in different formats, such as text, videos, images, audio, etc. The objective of this work is to analyze the positive, negative, and neutral feelings of people who publish their opinions on Twitter with the hashtag #Monkeypox. To find out what people think about this disease, a hybrid-based model architecture built on CNN and LSTM was used to determine the prediction accuracy. The prediction result obtained from the total monkeypox data was 83% accurate. Other performance metrics were also used to evaluate the model, such as specificity, recall level, and F1 score, representing 99%, 85%, and 88%, respectively. The results also showed the polarity of feelings through the CNN-LSTM confusion matrix, where 45.42% of people expressed neither positive nor negative opinions, while 19.45% expressed negative and fearful feelings about this infectious disease. The results of this work contribute to raising public awareness about the monkeypox virus.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-30T20:58:08Z
dc.date.available.none.fl_str_mv 2023-11-30T20:58:08Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2831
dc.identifier.journal.es_PE.fl_str_mv Vaccines
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/vaccines11020312
url https://hdl.handle.net/20.500.13067/2831
https://doi.org/10.3390/vaccines11020312
identifier_str_mv Vaccines
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.mdpi.com/2076-393X/11/2/312
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 11
dc.source.issue.es_PE.fl_str_mv 2
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 12
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2831/3/12_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2831/4/12_2023.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2831/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2831/1/12_2023.pdf
bitstream.checksum.fl_str_mv b6c83fdf0e2b1f544dfbacb555095c02
0895b324890dae9f27f1fd1a7c5e1cae
9243398ff393db1861c890baeaeee5f9
79e7491fab347ba4a1a22dbac1658c88
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915410134794240
score 13.987529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).