Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB

Descripción del Articulo

Predicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to pre...

Descripción completa

Detalles Bibliográficos
Autores: Incio Flores, Fernando Alain, Capuñay Sanchez, Dulce Lucero, Estela Urbina, Ronald Omar, Delgado Soto, Jorge Antonio, Vergara Medrano, Segundo Edilberto
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Privada de Tacna
Repositorio:Revista UPT - Veritas et Scientia
Lenguaje:español
OAI Identifier:oai:ojs2.172.30.101.191:article/464
Enlace del recurso:http://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464
Nivel de acceso:acceso abierto
id 2617-0639_cbc20a001270c7bc2ae761b1049b66e6
oai_identifier_str oai:ojs2.172.30.101.191:article/464
network_acronym_str 2617-0639
repository_id_str
network_name_str Revista UPT - Veritas et Scientia
spelling Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLBDiseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLBIncio Flores, Fernando AlainCapuñay Sanchez, Dulce LuceroEstela Urbina, Ronald OmarDelgado Soto, Jorge AntonioVergara Medrano, Segundo EdilbertoPredicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to predict the academic results of the physics course of the students of the II cycle of the Civil Engineering career of the National Intercultural University Fabiola Salazar Leguía de Bagua-Peru based on data historical. The RNA was designed and implemented in the MATLAB Software, its architecture is made up of an input layer, a hidden layer and an output layer, for the RNA training two algorithms that the MATLAB Toolbox has: the Scaled Conjugate Gradient achieving a prediction percentage of 70% and the Levenberg-Marquardt achieving a prediction percentage of 86%.Predecir los resultados académicos de los estudiantes permite al docente buscar técnicas y estrategias en el tiempo indicado durante el proceso de enseñanza y aprendizaje con el fin de mejorar el logro de competencias en sus estudiantes. En esta investigación se implementó una red neuronal artificial (RNA) para predecir los resultados académicos del curso de física de los estudiantes del II ciclo de la carrera profesional de Ingeniería Civil de la universidad Nacional Intercultural Fabiola Salazar Leguía de Bagua-Perú en función de datos históricos. La RNA se diseñó e implemento en el Software MATLAB, su arquitectura está formada por una capa de entrada, una capa oculta y una capa de salida, para el entrenamiento de la RNA se utilizó dos algoritmos que posee la Toolbox de MATLAB: el Scaled Conjugate Gradient logrando un porcentaje de predicción del 70% y el Levenberg-Marquardt logrando un porcentaje de predicción 86%.Universidad Privada de Tacna2021-05-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/46410.47796/ves.v10i1.464REVISTA VERITAS ET SCIENTIA - UPT; Vol. 10 Núm. 1 (2021): Revista Veritas et Scientia; 107 - 117JOURNAL VERITAS ET SCIENTIA - UPT; Vol 10 No 1 (2021): Revista Veritas et Scientia; 107 - 1172617-06392307-513910.47796/ves.v10i1reponame:Revista UPT - Veritas et Scientiainstname:Universidad Privada de Tacnainstacron:UPTspahttp://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464/373http://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464/397Derechos de autor 2021 Fernando Alain Incio Flores, Dulce Lucero Capuñay Sanchez, Ronald Omar Estela Urbina, Jorge Antonio Delgado Soto, Segundo Edilberto Vergara Medranohttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2021-06-04T16:25:19Zmail@mail.com -
dc.title.none.fl_str_mv Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
Diseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLB
title Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
spellingShingle Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
Incio Flores, Fernando Alain
title_short Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
title_full Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
title_fullStr Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
title_full_unstemmed Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
title_sort Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
dc.creator.none.fl_str_mv Incio Flores, Fernando Alain
Capuñay Sanchez, Dulce Lucero
Estela Urbina, Ronald Omar
Delgado Soto, Jorge Antonio
Vergara Medrano, Segundo Edilberto
author Incio Flores, Fernando Alain
author_facet Incio Flores, Fernando Alain
Capuñay Sanchez, Dulce Lucero
Estela Urbina, Ronald Omar
Delgado Soto, Jorge Antonio
Vergara Medrano, Segundo Edilberto
author_role author
author2 Capuñay Sanchez, Dulce Lucero
Estela Urbina, Ronald Omar
Delgado Soto, Jorge Antonio
Vergara Medrano, Segundo Edilberto
author2_role author
author
author
author
dc.description.none.fl_txt_mv Predicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to predict the academic results of the physics course of the students of the II cycle of the Civil Engineering career of the National Intercultural University Fabiola Salazar Leguía de Bagua-Peru based on data historical. The RNA was designed and implemented in the MATLAB Software, its architecture is made up of an input layer, a hidden layer and an output layer, for the RNA training two algorithms that the MATLAB Toolbox has: the Scaled Conjugate Gradient achieving a prediction percentage of 70% and the Levenberg-Marquardt achieving a prediction percentage of 86%.
Predecir los resultados académicos de los estudiantes permite al docente buscar técnicas y estrategias en el tiempo indicado durante el proceso de enseñanza y aprendizaje con el fin de mejorar el logro de competencias en sus estudiantes. En esta investigación se implementó una red neuronal artificial (RNA) para predecir los resultados académicos del curso de física de los estudiantes del II ciclo de la carrera profesional de Ingeniería Civil de la universidad Nacional Intercultural Fabiola Salazar Leguía de Bagua-Perú en función de datos históricos. La RNA se diseñó e implemento en el Software MATLAB, su arquitectura está formada por una capa de entrada, una capa oculta y una capa de salida, para el entrenamiento de la RNA se utilizó dos algoritmos que posee la Toolbox de MATLAB: el Scaled Conjugate Gradient logrando un porcentaje de predicción del 70% y el Levenberg-Marquardt logrando un porcentaje de predicción 86%.
description Predicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to predict the academic results of the physics course of the students of the II cycle of the Civil Engineering career of the National Intercultural University Fabiola Salazar Leguía de Bagua-Peru based on data historical. The RNA was designed and implemented in the MATLAB Software, its architecture is made up of an input layer, a hidden layer and an output layer, for the RNA training two algorithms that the MATLAB Toolbox has: the Scaled Conjugate Gradient achieving a prediction percentage of 70% and the Levenberg-Marquardt achieving a prediction percentage of 86%.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464
10.47796/ves.v10i1.464
url http://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464
identifier_str_mv 10.47796/ves.v10i1.464
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464/373
http://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464/397
dc.rights.none.fl_str_mv Derechos de autor 2021 Fernando Alain Incio Flores, Dulce Lucero Capuñay Sanchez, Ronald Omar Estela Urbina, Jorge Antonio Delgado Soto, Segundo Edilberto Vergara Medrano
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Fernando Alain Incio Flores, Dulce Lucero Capuñay Sanchez, Ronald Omar Estela Urbina, Jorge Antonio Delgado Soto, Segundo Edilberto Vergara Medrano
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad Privada de Tacna
publisher.none.fl_str_mv Universidad Privada de Tacna
dc.source.none.fl_str_mv REVISTA VERITAS ET SCIENTIA - UPT; Vol. 10 Núm. 1 (2021): Revista Veritas et Scientia; 107 - 117
JOURNAL VERITAS ET SCIENTIA - UPT; Vol 10 No 1 (2021): Revista Veritas et Scientia; 107 - 117
2617-0639
2307-5139
10.47796/ves.v10i1
reponame:Revista UPT - Veritas et Scientia
instname:Universidad Privada de Tacna
instacron:UPT
reponame_str Revista UPT - Veritas et Scientia
collection Revista UPT - Veritas et Scientia
instname_str Universidad Privada de Tacna
instacron_str UPT
institution UPT
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701654249185738752
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).