Mostrando 1 - 9 Resultados de 9 Para Buscar 'Vera Vílchez, Jesús', tiempo de consulta: 0.01s Limitar resultados
1
2
5
artículo
Ullucus tuberosus is an Andean region crop adapted to high-altitude environments and dryland cultivation. It is an essential resource that guarantees food security due to its carbohydrate, protein, and low-fat content. However, current change patterns in precipitation and temperatures warn of complex scenarios where climate change will affect this crop. Therefore, predicting these effects through simulation is a valuable tool for evaluating this crop’s sustainability. This study aims to evaluate ulluco’s crop yield under dryland conditions at 3914 m.a.s.l. considering climate change scenarios from 2024 to 2100 by using the AquaCrop model. Simulations were carried out using current meteorological data, crop agronomic information, and simulations for SSP1-2.6, SSP3-7.0, and SSP5-8.5 of CMIP 6. The results indicate that minimum temperature increases and seasonal precipitation exacerbati...
6
documento de trabajo
Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy...
7
artículo
Ullucus tuberosus is an Andean region crop adapted to high-altitude environments and dryland cultivation. It is an essential resource that guarantees food security due to its carbohydrate, protein, and low-fat content. However, current change patterns in precipitation and temperatures warn of complex scenarios where climate change will affect this crop. Therefore, predicting these effects through simulation is a valuable tool for evaluating this crop’s sustainability. This study aims to evaluate ulluco’s crop yield under dryland conditions at 3914 m.a.s.l. considering climate change scenarios from 2024 to 2100 by using the AquaCrop model. Simulations were carried out using current meteorological data, crop agronomic information, and simulations for SSP1-2.6, SSP3-7.0, and SSP5-8.5 of CMIP 6. The results indicate that minimum temperature increases and seasonal precipitation exacerbati...
8
documento de trabajo
Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy...
9
artículo
The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indi...