Mostrando 1 - 7 Resultados de 7 Para Buscar 'Santaria Leuyacc, Yony Raúl', tiempo de consulta: 2.83s Limitar resultados
1
artículo
In this work we are interested in studying the existence of nontrivial weak solutions for a class of nonlinear elliptic equations defined in a bounded domain in dimension two, where the nonlinearities possess maximal exponential growth range motivated by Trudinger-Moser inequalities in Lorentz-Sobolev spaces. In order to study the solvability we use a variational approach. More specifically, we use mountain pass theorem combined with Trudinger-Moser type inequalities.
2
artículo
En este trabajo nos interesa estudiar la existencia de soluciones estacionarias para una ecuación de Navier-Stokes-3D en un fluido compresible e isotérmico. Para probar la existencia de soluciones usaremos un método de aproximaciones sucesivas, siguiendo los resultados mostrados por M. Padula.
3
artículo
In this work we are interested in studying the existence of nontrivial weak solutions for a class of nonlinear elliptic equations defined in a bounded domain in dimension two, where the nonlinearities possess maximal exponential growth range motivated by Trudinger-Moser inequalities in Lorentz-Sobolev spaces. In order to study the solvability we use a variational approach. More specifically, we use mountain pass theorem combined with Trudinger-Moser type inequalities.
4
artículo
In this work we are interested in studying the existence of stationary solutions for a Navier--Stokes--3D equation in a compressible and isothermal flow. In order to prove the existence of solutions we use a method of successive approximations, following the results shown by M. Padula.
5
tesis de grado
Estudia ecuaciones elípticas de la forma (P) −∆u + λu = f(x, u), en Ω, u ∈ H1 0 (Ω), donde Ω ⊂ R N (N ≥ 2) es un dominio limitado o Ω = R N y f : Ω × R → R es una función continua con condiciones de crecimiento subcrítico y crítico. También estudia sistemas de ecuaciones elípticas de la forma (S)    −∆u = f(x, u, v), em Ω, −∆v = g(x, u, v), em Ω, u, v ∈ H1 0 (Ω), donde Ω ⊂ R N (N ≥ 2) , f, g : Ω × R 2 → R son funciones continuas con condiciones de crecimiento subcrítico. Encuentra soluciones definidas en H1 0 (Ω) × H1 0 (Ω), para sistemas elípticos de tipo gradiente y de tipo hamiltoniano. Para la existencia de soluciones usa Métodos Varacionales, haciendo uso especial del Teorema del Paso de Montaña.
6
artículo
This paper is devoted to showing the upper semicontinuity of global attractors associated with the family of nonlinear viscoelastic equations (Formula presented.) in a three-dimensional space, for f growing up to the critical exponent and dependent on ρ ∈ [0,4), as ρ→0+. This equation models extensional vibrations of thin rods with nonlinear material density ϱ(∂tu) = |∂tu|ρ and presence of memory effects. This type of problems has been extensively studied by several authors; the existence of a global attractor with optimal regularity for each ρ ∈ [0,4) were established only recently. The proof involves the optimal regularity of the attractors combined with Hausdorff's measure.
7
artículo
The main objective of this work is to study the long-term dynamics of a p−Kirchhoff model with infinite memory exposed to structural forces on a bounded domain Ω ⊂ ℝn. In particular, the existence of a global attractor with exponential attraction rate and finite fractal dimension is shown, that is, the existence of an exponential attractor is proved.