Upper semicontinuity of global attractors for a viscoelastic equations with nonlinear density and memory effects

Descripción del Articulo

This paper is devoted to showing the upper semicontinuity of global attractors associated with the family of nonlinear viscoelastic equations (Formula presented.) in a three-dimensional space, for f growing up to the critical exponent and dependent on ρ ∈ [0,4), as ρ→0+. This equation models extensi...

Descripción completa

Detalles Bibliográficos
Autores: Santaria Leuyacc, Yony Raúl, Crisostomo Parejas, Jorge Luis
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad San Ignacio de Loyola
Repositorio:USIL-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.usil.edu.pe:20.500.14005/8438
Enlace del recurso:https://hdl.handle.net/20.500.14005/8438
http://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5389
http://dx.doi.org/10.1002/mma.5389
Nivel de acceso:acceso embargado
Materia:Dynamical systems
Nonlinear equations
Data storage equipment
Descripción
Sumario:This paper is devoted to showing the upper semicontinuity of global attractors associated with the family of nonlinear viscoelastic equations (Formula presented.) in a three-dimensional space, for f growing up to the critical exponent and dependent on ρ ∈ [0,4), as ρ→0+. This equation models extensional vibrations of thin rods with nonlinear material density ϱ(∂tu) = |∂tu|ρ and presence of memory effects. This type of problems has been extensively studied by several authors; the existence of a global attractor with optimal regularity for each ρ ∈ [0,4) were established only recently. The proof involves the optimal regularity of the attractors combined with Hausdorff's measure.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).