1
artículo
Publicado 2017
Enlace

Large hydrological systems aggregate compositionally different waters derived from a variety of pathways. In the case of continental‐scale rivers, such aggregation occurs noticeably at confluences between tributaries. Here we explore how such aggregation can affect solute concentration‐discharge (C‐Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We build up a simple model for tributary mixing to predict the behavior of C‐Q relationships during aggregation. We test a set of predictions made in the context of the largest world's river, the Amazon. In particular, we predict that the C‐Q relationships of the rivers draining heterogeneous catchments should be the most “dilutional” and should display the widest hysteresis loops. To check these predictions, we compute 10 day‐periodicity time ser...
2
artículo
Publicado 2018
Enlace

In Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca²⁺, HCO₃, K+, Mg²⁺, and SiO₂ are controlled on the first order by runoff variability, while Cl, Na⁺ and SO₄² are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecu...