Mostrando 1 - 16 Resultados de 16 Para Buscar 'Huaringa Segura, Zacarías Luis', tiempo de consulta: 1.49s Limitar resultados
1
artículo
In this paper we investigate the global existence and decay of solutions to a degenerate wave equations with nonlinear dissipative term of variable coefficient.
2
artículo
En el presente trabajo investigamos la existencia global de las soluciones de una Ecuación no Lineal, prescindiendo del "Potential well Method" y aplicamos el método del Tartar
3
artículo
Decay estimates for the energy are derived for a linear hyperbolic equation with time - dependent coefficients.
4
artículo
En este trabajo estudiamos la existencia y unicidad de la solución global de la ecuación de Kirchoff .... Con una disipación au' y demostraremos el decaimiento exponencial de su energía.
5
artículo
In this paper we investigate the global existence and decay of solutions to a degenerate wave equations with nonlinear dissipative term of variable coefficient.
6
artículo
En el presente trabajo investigamos la existencia global de las soluciones de una Ecuación no Lineal, prescindiendo del "Potential well Method" y aplicamos el método del Tartar
7
artículo
Decay estimates for the energy are derived for a linear hyperbolic equation with time - dependent coefficients.
8
artículo
En este trabajo estudiamos la existencia y unicidad de la solución global de la ecuación de Kirchoff .... Con una disipación au' y demostraremos el decaimiento exponencial de su energía.
9
artículo
In this article we study the wave propagation over materials consisting of two components: one component is simple elastic while the other has  a nonlinear internal dampingwith elastic coefficients dependent on time; both components having source terms. Byusing the potential well method we obtain the global existence, we also show that theenergy of the system decays uniformly to zero,
10
artículo
In this article we study the wave propagation over materials consisting of two components: one component is simple elastic while the other has  a nonlinear internal dampingwith elastic coefficients dependent on time; both components having source terms. Byusing the potential well method we obtain the global existence, we also show that theenergy of the system decays uniformly to zero,
11
artículo
In this article, we are concerned with the stability of solutions for the wave equation with a weakly nonlinear boundary dissipation and source term. The resultsare proved by means of the potential well method, the multiplier technique and a newintegral inequality.
12
artículo
En este está enfocado en la estabilidad de las soluciones de una ecuaciónde onda con disipación no lineal débil en la frontera y término fuente. Los resultadosson probados gracias al método de caída de potencial, la técnica de los multiplicadores y las nuevas desigualdades de integrales.
13
artículo
In this work we are concerned with the existence of strong solutions andexponential decay of the total energy for the initial boundary value problem associatedwith the quasilinear wave equation with nonlinear source, under the assumption thatthe velocity boundary feedback is dissipative. The results are proved by means ofthe potential well method, the multiplier technique and suitable unique continuationtheorem for the wave equation with variable coefficients.
14
artículo
In this work we are concerned with the existence of strong solutions andexponential decay of the total energy for the initial boundary value problem associatedwith the quasilinear wave equation with nonlinear source, under the assumption thatthe velocity boundary feedback is dissipative. The results are proved by means ofthe potential well method, the multiplier technique and suitable unique continuationtheorem for the wave equation with variable coefficients.